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Abstract

In this research, we develope a stochastic model of endogenous growth. We assume that 
the exchange rate is driven by a mixed diffusion-jump process, and the tax rate on wealth 
is governed by a geometric Brownian motion. We also suppose that contingent claims for 
hedging against future exchange-rate depreciation are not available. Finally, we use the 
proposed model to carry out a Monte Carlo simulation experiment that explains the observed 
mean growth rate of output for the Mexican case between 1930 and 2002.
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Introduction

The impact of uncertainty on economic growth has been of great interest to policy-
makers for a long time. The purpose of this paper is to develop a stochastic model 
of endogenous growth in which agents have expectations of depreciation of the 
exchange rate driven by a mixed diffusion-jump process. Although uncertainty is a 
key element in studying growth, there are few studies considering a stochastic setting. 
In this regard we may mention, for instance, Canton (2001) and Gokan (2002).

It is important to point out that mixed diffusion-jump processes provide 
heavy tails and skeweness in the distribution of the exchange rate to rationalize 
dynamics that cannot be generated by using only the Brownian motion. This fact 
is not just a sophistication to be included in growth models, but an important issue 
with significant qualitative implications in the determinants of the growth rate of 
output.

In our approach, revenue raised by taxes, including seignorage, is wasted 
in unproductive government purchases. The model assumes that contingent-claims 
markets to hedge against future exchange-rate depreciation are unavailable. It is also 
assumed that an un-certain tax rate on wealth is governed by a geometric Brownian 
motion. Assuming risk averse agents, we examine the growth rate of consumption 
and output in the presence of taxes on wealth and consumption. The production 
function has constant return to capital (Rebelo, 1991), we combine this technology 
with the optimizing behavior of consumers and firms to obtain the stochastic per 
capita growth rate of consumption, capital and output.

Our modelling has several distinctive features in studying growth de-
terminants and their dynamic implications: it takes into account all risk factors in 
the exchange-rate dynamics, providing a more realistic stochastic environment; it 
derives tractable closed-form solutions, making easier the understanding of the key 
issues of growth; it examines the effects of various forms of distortionary taxes on 
growth; and it explains the observed output, in the Mexican case between 1930 and 
2002, by using Monte Carlo simulation methods.

The paper is organized as follows. In the next section, we work out a sto-
chastic endogenous model where agents have expectations of depreciation of the 
exchange rate guided by a mixed diffusion-jump process. In this economy, agents 
pay a tax on wealth at an uncertain rate driven by a geometric Brownian motion. In 

1 A study where exchange-rate derivatives are available can be found in Venegas-Martínez (2005). Other studies 
fos the Mexican case within a stochastic: framework can be found in Venegas-Martínez (2004) and (2004b).



   A stochastic model of endogenous growth: the mexican case, 1930-2002    85

section 2, we solve the consumer s̓ choice problem. In section 3, we undertake policy 
experiments. In section 4, we study the dynamic behavior of wealth. In section 5, 
we examine consumption dynamics and address a number of fiscal policy issues. 
In section 6, we specify the technology to derive the per capita growth rates of con-
sumption, capital and output. In section 7, we carry out a Monte Carlo simulation 
experiment that replicates the mean and variance of the observed annual growth 
rate of output in Mexico between 1930 and 2002. Finally, we draw conclusions, 
acknowledge limitations, and make suggestions for further research.

1. The setting of the model

Let us consider a small open economy with a single infinite-lived household in a 
world with a single perishable consumption good. We assume that the good is fre-
ely traded, and its domestic price level, Pt, is determined by the purchasing power 
parity condition, namely

 Pt = Pt* et, (1)

where Pt* is the foreign-currency price of the good in the rest of world, 
and et is the nominal exchange rate. We will assume, for the sake of simplicity, that 
Pt* is equal to 1.

We suppose that the number of extreme movements in the exchange rate, 
i.e., jumps in the exchange rate, per unit of time, follows a Poisson process Qt with 
intensity h, so IP(N) {dQt = 1} = hdt and IP(N) {dQt =0} =1- hdt + o(dt). Thus,

 E(N) [dQt] =Var (N) [dQt] = hdt (2)

Let us consider a Brownian motion, dVt, that is E[dVt] = 0 and Var[dVt]=dt. 
We assume that the consumer perceives that the expected inflation rate, dPt/Pt, and 
consequently the expected rate of depreciation, det /et, follows a geometric Brownian 
motion with Poisson jumps in accordance with

 , (3)

where ∈ is the mean expected rate of depreciation conditional on no jumps, 
σP is the instantaneous volatility of the expected price level, and μ is the mean ex-
pected size of an exchange-rate jump. Process Vt is supposed to be independent of 
Qt. In what follows, ∈, σP, h and μ are all supposed to be positive constants. Figure 
1 shows a Brownian motion and a mixed diffusion-jump process.
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The agent holds real cash balances, mt = Mt /Pt, where Mt is the nominal stock 
of money. The stochastic rate of return of holding real cash balances, dRm, is given 
by the percentage change in the price of money in terms of goods, dmt/mt. By applying 

Figure 1
A Brownian motion and a mixed diffusion-jump process

Itôʼs lemma for diffusion-jump processes to the inverse of the price level, with (3) as 
the underlying process, it can be shown

  (4)

The agent also holds capital, kt, that pays a risk-free real interest rate r, 
which is constant for all terms, satisfying

 dkt = rkt dt, k0 given (5)

The representative agent takes r as given.
Let us consider now a Brownian motion dWt, that is E[dWt] = 0 and 

Var[dWt] = dt. We assume that the representative consumer perceives that his/her 
wealth is taxed at an uncertain rate, τt, in accordance with the following stochastic 
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differential equation:

  (6)

where

 , (7)

and

 ρ∈ (-1, 1). (8)

Here τ is the mean expected growth rate of the taxes on wealth, σ
τ
 is the 

volatility of the tax rate on wealth, and ρ∈(-1, 1) is the correlation between chan-
ges in inflation and changes in wealth taxes. Notice that an increase in the rate of 
depreciation will produce a higher depreciation in real cash balances. This, in turn, 
will reduce real assets, which could lead to the fiscal authority to modify tax rates. 
Processes Qt, Vt, and Wt are supposed to be independent.

Consider a cash-in-advance constraint of the Clower-Lucas-Feenstra 
form:

 , (9)

where ct is consumption, and α >0 is the time that money must be held to 
finance consumption. Condition (9) is critical in linking exchange-rate dynamics 
with consumption. Observe that

In the sequel, we will assume that the error o(α) is negligible.

2. The consumerʼs decision problem

In this section, we characterize the householdʼs optimal decisions on consumption 
and portfolio shares through the Hamilton-Jacobi-Bellman condition of the conti-
nuous-time stochastic dynamic programming.

The stochastic consumerʼs wealth accumulation in terms of the portfolio 
shares,

wt = mt/at,

-
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1 - wt = kt/at,

and consumption, ct, is given by the following system:

,

  , (10)

where dRk =dkt/kt, and τ is a resident-based ad valorem tax rate on con-
sumption. By substituting (4), (5) and (9) into the first equation of (10), we get

 , (11)

where

The von Neumann-Morgenstern utility at time t, Vt, of the competitive 
consumer is assumed to have the time-separable form:

 , (12)

Notice that the agentʼs subjective discount rate has been set equal to the 
constant real international rate of interest, r, to avoid unnecessary technical difficul-
ties. We consider the logarithmic utility function, u(ct) = log(ct), in order to derive 
closed-form solutions and make the analysis easy to manage.

In this case, the Hamilton-Jacobi-Bellman equation for the stochastic op-
timal control problem of maximizing the agentʼs life-time expected utility subject 
to the intertemporal budget constraint is:

 
 (13)

where

ˆ
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is the agentʼs indirect utility function (or welfare function) and Ia(at, τt, t) 
is the co-state variable.

Given the exponential time discounting in (14), we specify I(at, τt, t) in a 
time-separable form as

 I (at, τt, t) ≡ F (at, τt)e
-rt (14)

where

 , (15)

where δ0, δ1 and H(τt; δ2, δ3) are to be determined from equation (15). 
Coefficients δ2 and δ3 must satisfy

 H(τ0) = 0 and Hʼ(τ0) = 0 (16)

Substituting (14) into (13), we have

 
 
 (17)

The first-order conditions of the intertemporal optimization of the risk 
averse representative agent lead to a time-invariant wt  ≡ w, and

  (18)

Figure 2 shows optimal w* as a function μ y h. We choose now H(τt) as 
a solution of

   (19)

Coefficients δ
0
 and δ

1
 are determined from (15) after substituting optimal 

w*. Thus, δ
1
 = r-1, so the coefficient of log(at) in (17) becomes zero, and

  
  (20)

Logarithmic utility implies that w depends only upon the parameters 
determining the stochastic characteristics of the economy, and hence w is constant. 



In other words, the consumerʼs attitude toward currency risk is independent of 
his/her wealth, i.e., the resulting level of wealth at any instant has no relevance for 
portfolio decisions. Moreover, due to the logarithmic utility, the correlation coeffi-
cient, ρ, plays no role in the consumerʼs optimal portfolio, only matters the trend 
and volatility componentes of the stochastic processes driving the dynamics of the 
exchange rate and the tax policy. Finally, it is important to point out that equation 
(18) is cubic, therefore it has at least one real root.

Notice also that from δ1 = r-1, it can be shown that the solution of (19) is

 (21)

where

 ,  

and

Coefficients δ2 and δ3 are determined in such a way that H(τ0) = 0 and H  ̓
(τ0) = 0.

Equation (18) is cubic with one negative and two positive roots. This can 
be seen by intersecting the straight line defined by the right-hand side of (18) with 
the graph defined by the left-hand side of (18). In such a case, there is only one 
intersection defining a unique, perfectly viable, steady-state share of wealth set apart 
for consumption such that w* ∈ (0, 1).

3. Policy experiments and comparative statics

We are now in a position to derive the first result: a once-and-for-all increase in the 
rate of depreciation, which results in an increase in the future opportunity cost of 
purchasing goods, leads to a permanent decrease in the proportion of wealth devoted 
to future consumption. To see this, we may differentiate (18) to find that

  (22)

where

  (23)



A second result is the response of the equilibrium share of real monetary 
balances, w*,to once-and-for-all changes in the intensity parameter, h. A once-and-
for-all increase in the expected number of exchange-rate jumps per unit of time causes 
an increase in the future opportunity cost of purchasing goods. This, in turn, permanently 
decreases the proportion of wealth set aside for future consumption. Indeed, after diffe-
rentiating (18), we get

  (24)

A similar effect is obtained for a once-and-for-all change in the mean 
expected size of an exchange-rate jump:

  (25)

Finally, an increase in the ad valorem tax on consumption, will produce a 

Figure 2
Optimal w* as a function µ y h
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permanent reduction in the proportion of wealth devoted to future consumption.

  (26)

4. Wealth dynamics

We now derive the stochastic process that generates wealth when the optimal rule 
is applied. After substituting the optimal share w* into (11), we get

 (27)

where

 , (28)

and

 ε ~ N (0, 1) (29)

We also have that

  (30)

and

  (31)

It can be shown that the solution of the stochastic differential equation in 
(27), conditional on a0, is

  (32)

where

  (33)

 φt = L (w*)Qt, (34)
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and

 Qt ~P (ht) (35)

As usual P(.) denotes a Poisson distribution. The stationary components 
of the parameters of the above distributions are:

and

Notice also that

  (36)

and

  (37)

Moreover, it readily follows that

  (38)

and

  
  (39)

Finally, according to (32), the last two equations determine the mean and 
variance of the growth rate of real assets.

5. Consumption dynamics

In virtue of (9) and (32), the stochastic process for consumption can be written as
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  (40)

This indicates that, in the absence of contingent-claims markets, the ex-
change-rate depreciation risk has an effect on wealth via the uncertainty in ξt, that 
is, uncertainty changes the opportunity set faced by the consumer. On the other hand, 
the depreciation risk also affects the composition of portfolio shares via its effects 
on w*. Thus, a policy change will be accompanied by both wealth and substitution 
effects. From (40), we can compute the probability that, in a given time interval, certain 
levels of consumption occur. It is also important to note, regarding (40) and (12), that 
the assumption that the agentʼs time-preference rate is equal to the worldʼs interest 
rate does not ensure a steady-state level of consumption. However, we do have a 
steady-state share of wealth set aside for consumption. We may conclude that un-
certainty is the clue to rationalize richer consumption dynamics that could not be 
obtained from deterministic models. Finally, in virtue of (40), equations (38) and 
(39) determine the mean and variance of the growth rate of consumption. Figure 3 
shows consumption as a function of a0 y τ0.

6. Technology specification

We suppose that technology is of the form yt = Akt where A >0. That is, the margi-
nal product of capital is constant and equal to A. We assume that capital does not 
depreciate. The condition for profit maximization require r = A. Since

1 - w* = k t / a t

we have

y t = A (1 - w*) at

In virtue of (32), we obtain

y t = A (1 - w*) a0e ξ t

Notice first that the production-consumption ratio remains constant ac-
cording to

  (41)

and due to the cash-in-advance constraint, the money-consumption ratio, mt/
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ct = α, remains also constant. On the other hand, from (40) and (41), we have that

and since mt = w*at, we obtain

Therefore,

  (42)

where, in [t, t + dt],

and

dQt ~ P(hdt)

Hence, if dt = T – t, in virtue of (36), the expected growth rate of output, 
in [t, T], satisfies

  (43)

Thus, ψt,T depends upon the parameters determining risk factors (uncertain 
fiscal and monetary policies), which shows significant qualitative differences with 
respect to the deterministic framework. Also, from (37), the variance of the growth 
rate of output, in [t, T], is given by

  (44)

Finally, from (42), the expected growth rates of consumption and real 
cash balances, as well as their variances, are also determined by (43) and (44), 
respectively.

7. Simulation exercise
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The following experiment is intended to replicate, via Monte Carlo methods, the 
mean and variance of the observed annual growth rate of output, E[dyt/yt]=E[dξt] 
and Var[dyt/yt] = Var[dξt], by using equations (43) and (44), in Mexico between 
1930 and 2002. In Figure 4, we show the observed annual growth rate of output 
from 1930 to 2002.2

Table 1 presents a vector of diffusion and jump parameter values, (∈, σP
-1, 

h, μ), that replicate the mean and variance of the annual growth rate. In order to 
choose such a vector, we tried about 800 different feasible combinations of parameter 
values. For simulation purposes, we have used a standard discrete-time version of 
(40) with an appropriate unit of time, see, for instance, Ripley (1985). Results are 
based on 10,000 iterations.

Conclusions

Most of the existing models of endogenous growth ignore uncertainty, providing elaborate 

Figure 3
Consumption as a function of a0 y τ0,

(a0 in 1011 pesos of 1993)
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justification why uncertainty does not need to be considered. We have shown that risk 
factors may lead to significant qualitative changes in the determinants of growth in contrast 
with the deterministic setting. The consideration of uncertainty in the expected dynamics of 
both the exchange rate and the tax policy have led to more complex transitional dynamics, 
but results were certainly richer.

Our stochastic framework, in which a Brownian motion and a Poisson 
process drive the expectations of exchange-rate jumps, and a geometric Brownian 
motion guides a tax rate on wealth, has provided new elements to carry out simu-
lation experiments and empirical research. In particular, our stochastic model was 
capable of explaining average growth for the Mexican case of 1930-2002.
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2 Data source: Instituto Nacional de Estadísticas, Geografía e Informática, INEGI.
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Figure 4
Observed growth rate from 1930 to 2002 (pesos of 1993)

Table 1
Optimal consumption shares, parameters, and estimates

w*
∈
σ
h
μ
F(w*)
G(w*)
L(w*)

0.430004
0.300000
0.009999
0.100000
0.300000
0.011026
0.000019
0.004539

α
r
−
τ
σ

τ

a0

0.980000
0.085000

 
0.060000
0.180000

1.849000 × 1012 (pesos of 1993)

estimated growth rate mean = 0.0470
estimated growth rate variance = 0.0223

observed growth rate mean = 0.0473
observed growth rate variance = 0.0222
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