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Abstract

This	paper	examines	the	role	of	jumps	in	a	continuous-time	short-term	interest	rate	model	for	
Mexico. A filtering algorithm provides estimates of jumps times and sizes in the time series 
of	Mexican	cetes	for	the	1998-2006	period.	The	empirical	results	indicate	that	the	inclusion	
of	jumps	in	the	diffusion	model	represents	a	better	alternative	than	not	to	include	them.
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Introduction

Many economic and financial models make use of an interest rate in some form. A 
model	with	a	good	description	and	forecasting	of	interest	rates	can	be	used	for	ex-
ample in providing parallel structure correct valuation of financial derivatives, giving 
a	better	explanation	of	the	future	performance	of	the	economy	and	describing	more	
accurately	the	weighted	average	cost	of	capital	(wacc). Specification of the interest 
rate dynamics is an important issue in finance, economics and accounting.

Many	of	 the	 continuous	 time	models	used	 to	 specify	 the	dynamics	of	
short-term	interest	rates	have	omitted	the	possibility	of	jumps,	but	typical	models	
which only include Brownian motion are not able to explain some facts like fat 
tails and skewness. To get an idea we can see in figure 1 that the daily changes in 
interest rates show some spikes, which could be interpreted as jumps. The changes 
in	the	short-term	interest	rate	go	from	-13.93%	to	15.47%	from	11-04-1998	to	04-
19-2006.

The	goal	of	this	paper	is	to	get	the	times	and	sizes	of	jumps	in	the	dynam-
ics	of	interest	rates	(cetes).	A	tractable	way	to	do	the	analysis	is	including	Poisson	
jumps in the diffusion model like in Johannes(2004) model, which has been applied 
for	the	Mexican	data	in	Núñez	and	Lorenzo(2007)	where	the	levels	of	conditional	
and unconditional kurtosis, generated by a pure diffusion model, were compared 
with the sample conditional and unconditional kurtosis from a short-term rate. In 
those papers, a nonparametric specification for the drift, volatility and jump intensity 
was	used	with	log	normal	jump	size.	For	the	Mexican	case	it	was	demonstrated	
that	including	jumps	in	the	diffusion	process	provides	a	better	representation	of	the	
data	than	the	pure	diffusion	model.	References	in	the	literature	can	be	found	about	
the	issue	of	using	or	not	diffusion	continuous	models	of	interest	rates	or	including	
jumps	in	a	parametric	context	(see	Ait-Sahalia,	1996).

We	develop	the	jump-diffusion	model	of	the	short-term	interest	rate	in	
the	following	section.	We	display	the	empirical	estimation	for	the	Mexican	case	in	
the	third	section	and	establish	some	conclusions	in	the	fourth.

1. Diffusion models and jumps

Pure	diffusion	models	of	the	interest	rate	which	include	Brownian	motion	are	writ-
ten	in	the	standard	form:

	 dr1	=	 (rt)dt	+	 (rt)dWt	 (1)
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Figure 1 
The time series of the level and changes in the cetes rate, november 1998 to 

april 2006
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where	Wt is a standard Brownian motion defined on Ω, F,	{Ft}t≥0,P)	with	{Ft}	a	
filtered space, and (m, s)	are	the	drift	and	volatility	respectively.	Under	technical	
regularity	conditions	(Jacod	and	Shiryaev,	1987):
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and	in	the	case	of	a	pure	diffusion	model	it	can	be	demonstrated	that
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Thus, with the first two conditional moments is not possible to recognize 
the	difference	between	a	pure	diffusion	model	and	a	jump	diffusion	model.	

The	jump	diffusion	model	we	propose	is

	 d log(rt ) = m(rt−)dt +s (rt−)dWt +ηdJt 	 (5)

where	η ~ N(0,s 2
η ),	the	jump	size,	is	a	normal	variable.	Jt	is	a	time-homogeneous	

pure-jump	process	and	we	are	modeling	the	logarithm	of	the	interest	rate.	In	this	
sense, we avoid negative values of the interest rates like in Das (1998), Das (2001) 
and	Zhou	(1999).

In this case (the basic principles are in Gihman and Skorohod 1972, and 
Johannes	2004),
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∆ →0

1
∆
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	 (6)
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Fourth and sixth moments are used for the identification of the intensity, 
λ(r),	and	variance	 2 	of	the	jump	process	mean:

	 lim
∆ →0
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	 lim
∆ →0

1
∆

Et,r[log(rt +∆ / rt )
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We	calculate	the	fourth	and	sixth	moments,	and	with	the	quotient	of	both	
moments	we	get	the	volatility	of	the	jump	process	(applying	Monte	Carlo	integra-
tion).	After	this,	we	can	obtain	the	intensity	of	the	Poisson	process.

The	Euler	discretization	used	for	the	simulation	of	paths	(1000)	is:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt )(Wt +∆ − Wt ) +η t +∆ Jt +∆	 (11)

and	at	the	same	time,	Monte	Carlo	simulations	give	sample	standard	errors.
The	steps	to	be	followed	in	order	to	evaluate	if	certain	set	of	observations	

were	generated	by	a	given	diffusion	model	(Johannes,	2004)	are:

1. Estimate the drift and diffusion coefficients of a given diffusion model.
2.	 Estimate	nonparametrically	kurt∆(r)	from	data.
3.	 Simulate	a	large	number	of	paths	from	the	diffusion	model	and	calculate	kurt∆(r)	

nonparametrically	from	each	path.
4. Compare the kurtosis from observed data against the one from the diffusion 

model.

Where the conditional kurtosis of the short-term interest rate over the 
time interval ∆ is

	 kurt∆ (r) =

1
∆

E[(rt +∆ − rt )
4 | rt = r]

1
∆

E [(rt +∆ − rt )
2 | rt = r]

	 (12)

2. Estimation for the Mexican case

The	data	used	in	the	analysis	are	daily	changes	of	the	short-term	interest	rate	from	
November	4,	1998	through	March	4,	2006.	The	estimates	of	the	drift	and	diffusion	
on a given time interval ∆, with the kernel, is obtained by means of the equation
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Here K(.) is a kernel (Gaussian in this case), and h	is	the	bandwidth.	We	
take different bandwidths for the estimation of the drift and diffusion coefficient. 
Note	that	the	moments	are	functions	of	the	interest	rate	r,	because	they	are	condi-
tional	on	such	r.

As a first idea we checked the summary statistics reported in table 1. We 
can see a big unconditional kurtosis of the short-term rate increments. This is an 
important	comparative	point	between	a	simple	diffusion	and	 the	 jump	diffusion	
model.

Table 1 
Summary Statistics

Summary statistics for daily cetes rates from november 1998 to april 2006

Mean Standard
Deviation Skewness Kurtosis First

Autocorrelation

r1
rt + ∆-rt

0.11118
-0.00012

0.06296
0.00418

1.48273
0.25794

5.07239
10.46498

0.99551
-0.06754

Source:	Authors’	calculations	with	data	from	INEGI.

2.1	Results	of	the	pure	diffusion	model

We	show	the	estimates	of	the	drift	and	diffusion	and	the	Monte	Carlo	standard	errors	
in	Figure	2,	from	Núñez	and	Lorenzo	(2007).	For	the	case	of	the	drift	we	used	h=0.05,	
the	diffusion	was	calculated	with	h=0.04	and	the	fourth	moment	was	calculated	with	
h=0.05.	One	may	notice	the	very	good	approximations	for	the	drift	and	diffusion	
coefficients in the top left and right panels. However, in the case of the conditional 
kurtosis in the panel below there is a bad approximation of the model with respect 
to the data. The kurtosis from the data is approximately between four and two times 
greater than the kurtosis generated by the model at low and middle levels of interest 
rates.	These	same	conclusions	are	obtained	with	different	bandwidth	choices

Then, the pure diffusion model is misspecified due to the fact that the model 
is unable to describe the kurtosis of the data. In conclusion, the pure diffusion model 
does	not	generate	enough	large	movements	to	properly	describe	the	data.



	 	 	Times	and	Sizes	of	Jumps	in	the	Mexican	Interest	Rate		41

Figure 2
Nonparametric estimation results for the single-factor diffusion model. The 
solid line is the function estimated from short-term rate data, the thin solid 
line is the Monte Carlo median, and the dash lines are the confidence bands
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This	led	us	to	consider	models	with	jumps.	Johannes	(2004)	extended	the	
nonparametric estimation methods from others, like Florens-Zmirou (1993), Stanton 
(1997)	and	Jiang&Knight	(1998).

The	Euler	discretization	used	for	the	simulations	of	paths	(1000)	is:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt )(Wt +∆ − Wt ) +η t +∆ Jt +∆	 (14)

and	at	the	same	time,	Monte	Carlo	simulations	give	sample	standard	errors.	Jt	indi-
cates	the	presence	of	a	jump,	and	P[Jt	=	1]	=	λt	,	the	intensity	of	the	process.
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2.2	Results	of	the	jump	diffusion

Note in figure 3, in the top left and right respectively, that the calculated levels of 
the	drift	and	variance	are	very	good	approximations	with	different	interest	rates.	
There,	the	bandwidth	used	was	h	=	s	for	the	drift,	and	the	second,	fourth	and	sixth	
moments	were	calculated	with	h	=	0.75s,	where	s	is	the	standard	deviation	of	the	
data,	 (in	 this	 case	s	=	0.5016	 is	 the	 standard	deviation	of	 ln(r)).The	 fourth	 line	
in	the	top	right	is	the	sum	of	the	variance	of	the	process	and	the	variance	of	the	
jumps.	The	rate	of	jumps	in	the	left	bottom	is	a	good	approximation	even	when	we	
have	certain	levels	of	the	rate	in	which	the	rate	of	the	model	does	not	enter	in	the	

Figure 3
Nonparametric estimation results for the jump-diffusion model. The solid 

line is the function estimated from short-term rate data, the thin solid line is 
the Monte Carlo median, and the dash lines are the confidence bands
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confidence band. The bandwidth used was h=0.75s because it depends on the sixth 
and	fourth	moments.

For	the	variance	of	the	process	of	jumps	in	the	bottom	right,	the	variance	
of	the	model	has	a	very	good	level	for	the	low	and	middle	levels	of	the	interest	rates.	
At	high	levels	we	can	say	that	they	are	good	approximations.

2.3	Estimation	of	Jump	Times	and	Sizes

Estimation	of	the	times	and	sizes	of	jumps	are	provided	with	the	help	of	the	Gibbs	
algorithm. Gibbs sampling is the simplest Markov Chain Montecarlo Method 
(MCMC)	for	exploring	 the	posterior	distributions	generated	by	continuous-time	
pricing	models.	MCMC	uses	 the	samples	of	estimated	parameters	generated	by	
numerical	integration.	If	all	the	conditional	distributions	can	be	directly	sampled	it	
is	referred	as	a	Gibbs	sampler.

Consider	the	discretization:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt ) ∆ε +η t +∆ Jt +∆	 (15)

where	P Jt +∆ =1rt[ ] = ˆ	λ (rt )∆ and εfN(0,1).	With	 ˆ	θ t = ˆ	m (rt ), ˆ	s (rt ), ˆ	λ (rt ), ˆ	s η
2{ }.

From	Gibbs’	sampler	we	get	(see	Appendix	2,	Johannes(2004)):

															p(Jt +∆ =1∆rt ,rt
ˆ	θ t ,η t +∆ ) p(η t +∆ Jt +∆ ∆rt ,rt , ˆ	θ t ,Jt +∆ =1)and 	 (16)

Applying	the	Gibbs	sampler	for	5000	iterations	and	eliminating	the	initial	
2000 iterations, (burn-in period), we have obtained the results of figure 4. In this 
figure we show the times of the jumps (with the dates) and their respective size, 
which	can	be	compared	with	the	graph	of	the	time	series	of	the	data.
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Finally,	we	give	a	table	with	the	size	of	the	jumps,	the	date	and	the	prob-
ability	of	jump.

Figure 4
Jump Times and their respective sizes
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Table 2
Size of jumps and their probabilities

Date Size Probability

21/12/2001
11/04/2002
12/04/2002
02/08/2002
27/09/2002
17/01/2003
06/06/2003

0.34805
-0.21564
0.21384
0.20099
0.30038
0.27684
0.21130

0.11443
0.11101
0.11854
0.11075
0.10339
0.10514
0.11799
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Conclusions

When studying the Mexican short-term interest rate dynamics we find misspeci-
fication in the classical single diffusion model due to the presence of jumps. A 
tractable	way	to	model	such	jumps	is	to	include	them	in	the	diffusion.	Good	results	
are obtained by doing this and our evidence is justified by means of Monte Carlo 
simulations. Applying the Gibbs sampler we find times and sizes of jumps (with 
their	 respective	 probabilities).	 Modeling	 diffusion	 with	 jumps	 provides	 a	 better	
representation	of	the	data	compared	with	the	classical	diffusion.
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