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Abstract

This paper examines the role of jumps in a continuous-time short-term interest rate model for 
Mexico. A filtering algorithm provides estimates of jumps times and sizes in the time series 
of Mexican cetes for the 1998-2006 period. The empirical results indicate that the inclusion 
of jumps in the diffusion model represents a better alternative than not to include them.
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Introduction

Many economic and financial models make use of an interest rate in some form. A 
model with a good description and forecasting of interest rates can be used for ex-
ample in providing parallel structure correct valuation of financial derivatives, giving 
a better explanation of the future performance of the economy and describing more 
accurately the weighted average cost of capital (wacc). Specification of the interest 
rate dynamics is an important issue in finance, economics and accounting.

Many of the continuous time models used to specify the dynamics of 
short-term interest rates have omitted the possibility of jumps, but typical models 
which only include Brownian motion are not able to explain some facts like fat 
tails and skewness. To get an idea we can see in figure 1 that the daily changes in 
interest rates show some spikes, which could be interpreted as jumps. The changes 
in the short-term interest rate go from -13.93% to 15.47% from 11-04-1998 to 04-
19-2006.

The goal of this paper is to get the times and sizes of jumps in the dynam-
ics of interest rates (cetes). A tractable way to do the analysis is including Poisson 
jumps in the diffusion model like in Johannes(2004) model, which has been applied 
for the Mexican data in Núñez and Lorenzo(2007) where the levels of conditional 
and unconditional kurtosis, generated by a pure diffusion model, were compared 
with the sample conditional and unconditional kurtosis from a short-term rate. In 
those papers, a nonparametric specification for the drift, volatility and jump intensity 
was used with log normal jump size. For the Mexican case it was demonstrated 
that including jumps in the diffusion process provides a better representation of the 
data than the pure diffusion model. References in the literature can be found about 
the issue of using or not diffusion continuous models of interest rates or including 
jumps in a parametric context (see Ait-Sahalia, 1996).

We develop the jump-diffusion model of the short-term interest rate in 
the following section. We display the empirical estimation for the Mexican case in 
the third section and establish some conclusions in the fourth.

1. Diffusion models and jumps

Pure diffusion models of the interest rate which include Brownian motion are writ-
ten in the standard form:

	 dr1 = (rt)dt + (rt)dWt	 (1)
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Figure 1 
The time series of the level and changes in the cetes rate, november 1998 to 

april 2006
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where Wt is a standard Brownian motion defined on Ω, F, {Ft}t≥0,P) with {Ft} a 
filtered space, and (m, s) are the drift and volatility respectively. Under technical 
regularity conditions (Jacod and Shiryaev, 1987):
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and in the case of a pure diffusion model it can be demonstrated that
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Thus, with the first two conditional moments is not possible to recognize 
the difference between a pure diffusion model and a jump diffusion model. 

The jump diffusion model we propose is

	 d log(rt ) = m(rt−)dt +s (rt−)dWt +ηdJt 	 (5)

where η ~ N(0,s 2
η ), the jump size, is a normal variable. Jt is a time-homogeneous 

pure-jump process and we are modeling the logarithm of the interest rate. In this 
sense, we avoid negative values of the interest rates like in Das (1998), Das (2001) 
and Zhou (1999).

In this case (the basic principles are in Gihman and Skorohod 1972, and 
Johannes 2004),
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Fourth and sixth moments are used for the identification of the intensity, 
λ(r), and variance 2  of the jump process mean:
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We calculate the fourth and sixth moments, and with the quotient of both 
moments we get the volatility of the jump process (applying Monte Carlo integra-
tion). After this, we can obtain the intensity of the Poisson process.

The Euler discretization used for the simulation of paths (1000) is:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt )(Wt +∆ − Wt ) +η t +∆ Jt +∆	 (11)

and at the same time, Monte Carlo simulations give sample standard errors.
The steps to be followed in order to evaluate if certain set of observations 

were generated by a given diffusion model (Johannes, 2004) are:

1.	 Estimate the drift and diffusion coefficients of a given diffusion model.
2.	 Estimate nonparametrically kurt∆(r) from data.
3.	 Simulate a large number of paths from the diffusion model and calculate kurt∆(r) 

nonparametrically from each path.
4.	 Compare the kurtosis from observed data against the one from the diffusion 

model.

Where the conditional kurtosis of the short-term interest rate over the 
time interval ∆ is

	 kurt∆ (r) =

1
∆

E[(rt +∆ − rt )
4 | rt = r]

1
∆

E [(rt +∆ − rt )
2 | rt = r]

	 (12)

2. Estimation for the Mexican case

The data used in the analysis are daily changes of the short-term interest rate from 
November 4, 1998 through March 4, 2006. The estimates of the drift and diffusion 
on a given time interval ∆, with the kernel, is obtained by means of the equation
	

1
∆

E
∧
[(rt +∆ − rt )

j | rt = r] =
K(

r(i+1)∆ − r
h

)
(r(i+1)∆ − ri∆ ) j

∆i=1

T

∑

K(
r(i+1)∆ − r

h
)

i=1

T

∑
=

ˆ	m (r) : j =1

ˆ	s 2(r) : j = 2

 

 
 

  
	 (13)



	40 	 Núñez, Lorenzo

Here K(.) is a kernel (Gaussian in this case), and h is the bandwidth. We 
take different bandwidths for the estimation of the drift and diffusion coefficient. 
Note that the moments are functions of the interest rate r, because they are condi-
tional on such r.

As a first idea we checked the summary statistics reported in table 1. We 
can see a big unconditional kurtosis of the short-term rate increments. This is an 
important comparative point between a simple diffusion and the jump diffusion 
model.

Table 1 
Summary Statistics

Summary statistics for daily cetes rates from november 1998 to april 2006

Mean Standard
Deviation Skewness Kurtosis First

Autocorrelation

r1
rt + ∆-rt

0.11118
-0.00012

0.06296
0.00418

1.48273
0.25794

5.07239
10.46498

0.99551
-0.06754

Source: Authors’ calculations with data from INEGI.

2.1 Results of the pure diffusion model

We show the estimates of the drift and diffusion and the Monte Carlo standard errors 
in Figure 2, from Núñez and Lorenzo (2007). For the case of the drift we used h=0.05, 
the diffusion was calculated with h=0.04 and the fourth moment was calculated with 
h=0.05. One may notice the very good approximations for the drift and diffusion 
coefficients in the top left and right panels. However, in the case of the conditional 
kurtosis in the panel below there is a bad approximation of the model with respect 
to the data. The kurtosis from the data is approximately between four and two times 
greater than the kurtosis generated by the model at low and middle levels of interest 
rates. These same conclusions are obtained with different bandwidth choices

Then, the pure diffusion model is misspecified due to the fact that the model 
is unable to describe the kurtosis of the data. In conclusion, the pure diffusion model 
does not generate enough large movements to properly describe the data.
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Figure 2
Nonparametric estimation results for the single-factor diffusion model. The 
solid line is the function estimated from short-term rate data, the thin solid 
line is the Monte Carlo median, and the dash lines are the confidence bands
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This led us to consider models with jumps. Johannes (2004) extended the 
nonparametric estimation methods from others, like Florens-Zmirou (1993), Stanton 
(1997) and Jiang&Knight (1998).

The Euler discretization used for the simulations of paths (1000) is:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt )(Wt +∆ − Wt ) +η t +∆ Jt +∆	 (14)

and at the same time, Monte Carlo simulations give sample standard errors. Jt indi-
cates the presence of a jump, and P[Jt = 1] = λt , the intensity of the process.
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2.2 Results of the jump diffusion

Note in figure 3, in the top left and right respectively, that the calculated levels of 
the drift and variance are very good approximations with different interest rates. 
There, the bandwidth used was h = s for the drift, and the second, fourth and sixth 
moments were calculated with h = 0.75s, where s is the standard deviation of the 
data, (in this case s = 0.5016 is the standard deviation of ln(r)).The fourth line 
in the top right is the sum of the variance of the process and the variance of the 
jumps. The rate of jumps in the left bottom is a good approximation even when we 
have certain levels of the rate in which the rate of the model does not enter in the 

Figure 3
Nonparametric estimation results for the jump-diffusion model. The solid 

line is the function estimated from short-term rate data, the thin solid line is 
the Monte Carlo median, and the dash lines are the confidence bands
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confidence band. The bandwidth used was h=0.75s because it depends on the sixth 
and fourth moments.

For the variance of the process of jumps in the bottom right, the variance 
of the model has a very good level for the low and middle levels of the interest rates. 
At high levels we can say that they are good approximations.

2.3 Estimation of Jump Times and Sizes

Estimation of the times and sizes of jumps are provided with the help of the Gibbs 
algorithm. Gibbs sampling is the simplest Markov Chain Montecarlo Method 
(MCMC) for exploring the posterior distributions generated by continuous-time 
pricing models. MCMC uses the samples of estimated parameters generated by 
numerical integration. If all the conditional distributions can be directly sampled it 
is referred as a Gibbs sampler.

Consider the discretization:

	 log(rt +∆ / rt ) = ˆ	m (rt )∆ + ˆ	s (rt ) ∆ε +η t +∆ Jt +∆	 (15)

where P Jt +∆ =1rt[ ] = ˆ	λ (rt )∆ and εfN(0,1). With ˆ	θ t = ˆ	m (rt ), ˆ	s (rt ), ˆ	λ (rt ), ˆ	s η
2{ }.

From Gibbs’ sampler we get (see Appendix 2, Johannes(2004)):

               p(Jt +∆ =1∆rt ,rt
ˆ	θ t ,η t +∆ ) p(η t +∆ Jt +∆ ∆rt ,rt , ˆ	θ t ,Jt +∆ =1)and 	 (16)

Applying the Gibbs sampler for 5000 iterations and eliminating the initial 
2000 iterations, (burn-in period), we have obtained the results of figure 4. In this 
figure we show the times of the jumps (with the dates) and their respective size, 
which can be compared with the graph of the time series of the data.
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Finally, we give a table with the size of the jumps, the date and the prob-
ability of jump.

Figure 4
Jump Times and their respective sizes
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Table 2
Size of jumps and their probabilities

Date Size Probability

21/12/2001
11/04/2002
12/04/2002
02/08/2002
27/09/2002
17/01/2003
06/06/2003

0.34805
-0.21564
0.21384
0.20099
0.30038
0.27684
0.21130

0.11443
0.11101
0.11854
0.11075
0.10339
0.10514
0.11799
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Conclusions

When studying the Mexican short-term interest rate dynamics we find misspeci-
fication in the classical single diffusion model due to the presence of jumps. A 
tractable way to model such jumps is to include them in the diffusion. Good results 
are obtained by doing this and our evidence is justified by means of Monte Carlo 
simulations. Applying the Gibbs sampler we find times and sizes of jumps (with 
their respective probabilities). Modeling diffusion with jumps provides a better 
representation of the data compared with the classical diffusion.
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