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Introduction

The subject of Stochastic Processes is complex, highly specialized and inmense,
but nowadays is almost impossible to asses a topic without requiring some results
from the theory, therefore we present a critical assessment of this vast subject and
show why it is so useful.1 A model is required when the aim is to explain uncertainty
dynamics which consists of a system of stochastic differential equations, an indis-
pensable ingredient for making apparent the reasons why the uncertain behavior
appears; a good model must be able to explain this uncertainty.

Most of these works use advanced mathematics and do not provide any
geometric intuition, therefore the interested reader must posses a great ability to
learn by only looking at formulas. Our contribution consists in providing a critical
synthesis of the literature and analyzing the geometric behavior of a basket of useful
models, stopping at computer simulation and borrowing ideas taken from the Mon-
te Carlo method. This will provide us with a very useful geometric analysis to
grasp the dynamics of the stochastic processes.

More specifically, using simulations to obtain different realizations of
the process which we will show in one graph, Glasserman, Paul (2004), recommends
realizations and its average is taken as E[Xt]. Nevertheless, there is an inconvenience,
as we have had to use many graphs, as it becomes incomprehensible to distinguish
among the different paths represented by one graph. However the article has enough
details so that the interested reader should be able to perform his own simulations
and arrive at his own.

We first present the ideas and mathematical principles upon which the
theory is built. Secondly, we talk about Wiener processes, and the very important
subject of diffusion process comes with an exposition of the well known Ito For-
mula. To close the section there is an application to the Forward Contracts and the
Black-Scholes formula to price the option contracts. Thirdly, several outstanding
models are simulated: Ornstein-Uhlenbeck(1930) , Merton (1970),Vasicek (1977),
CIR (1985), Ho and Lee (1986), Longstaff (1979), Hull and White (1990). Finally:
Simulating Stochastic Processes in Multiple dimensions is included.

1 One reference in Spanish is the book of Francisco Venegas, “Riesgos Financieros y Económicos”, In english
a very good reference is Karatzas and Shreve.



Stochastic Processes. A Critical Synthesis  75

1. The Basic Ideas

The idea of probability is rooted in Measure Theory, whose origins go back to
Emile Borel and Henry Lebesgue among others. Later, in 1933, Andrey Kolmogorov
would present the probability axioms.

Here we must think in terms of events and ask questions such as: has
event A occurred? Or, what are our chances that the event A does not occur? In both
questions we are using sets and measuring the possibility of A to occur, or to not
occur.

To make the idea tractable, all the possible outcomes from the states of
nature are collected in a set Ω. This set is called the sample space, and its subsets
are called events. It is now of the utmost importance to see quite clearly that a set
function A  P(A) is required, so that for every event A, a measure is associated
that means the probability of A to occur. Probability is a measure of events occurring
in a sample space Ω. But this set Ω must posses some properties in order to work
with it, and to build a theory, we need to recall the idea of a σ-algebra ℑ , which
consists of a family formed by subsets of Ω that fulfill the following conditions:

1. Ω is an element of the family ℑ .
2. If A is an element of ℑ  the complement of Ac is again an element of ℑ .
3. If (An) n = 1,2,… is a sequence of elements in ℑ  then the union of all of them

is again an element in ℑ . ∈
∞

=
U

1n
nA ℑ .

The idea of σ-algebra is critical to build a proper concept of probability
as a set function defined on ≥ such that: P:ℑ [0,1]; is a set map that for every
event A associates its probability to occur, denoted by P(A), 0 ≤ P(A) ≤ 1.

1. P(A) ≥ 0 for every event A in ℑ
2. P(Ω)=1

3. P is σ-additive: if ( )∞=1nnA  is a disjoint sequence of sets in ℑ , fulfilling that; if
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The triple (Ω, ℑ , P) is called a ‘probability space’.
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By a ‘random variable’ is meant a measurable function X:Ω ℜ  (for
every open interval (a, b)⊂ℜ , X-1(a, b)⊂Ω  belongs to the σ-algebra ℑ ), a technical
issue is that we are going to include in the σ-algebra ℑ  all the subsets of a zero
set, that is if A⊂  B and P(B)=0 then A belongs to the family σ-algebra ℑ  and
P(A)=0. P:ℑ [0,1] is the probability measure defined on Ω, and the probability
of an event B is defined as:

∫==
B

xX dPfBX  P B P ] )([)( -1

The function fx is called the ‘density function’ of the random variable X
and is the main ingredient to measure the probability of the event B to occur. The
well known ‘distribution function’ FX of X is the accumulated probability.

)(Bset   the is B)( t,-   dPft F
B

xX ∞== ∫

1.1 Conditional expectation

When two events A, B ε ℑ  are such that P(B)>0 one can take the conditional
probability defined as: P(A B)= P(A∩B) / P(B) therefore we have the map A
P(A B) and this defines a new probability measure for the family:

B∩ℑ  = { B∩A for every A εℑ  }. Now to build an expected value of the random variable
X over the set B, defined as: E[X B]= E[X•1B] / P(B), more explicitly:

∫=
B

X BP/dPXfB|XE )(][][

Which is the expectation of X given that we lay on the event B, 1B is the
indicator function 1B(x)=1 when x ε B and 1B(x)=0 when x ε Bc.

1.2 Random convergence

In this context, what is the meaning of a notation such as Xn X? Well there are
different answers and all of them hinge on the kind of analysis one is pursuing.
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The weakest concept is ‘convergence in distribution’, which means that
one has pointwise convergence on the points of continuity of the limit function.
That is: Fn(z) F(z) for every point z such that F(z) is continuous at z, where Fn(z)
is the distribution function of the random variable Xn and F(z) is the distribution
function of the random variable X.

The next level is ‘convergence in probability’, which means that for large
samples we rarely see Xn far away from X more than ε >0. That is for every ε >0:

P[  Xn -X > ε ] 0 as n ∞.

The strongest concept is L2 convergence, usually called ‘convergence in
the mean’. Here we are accepting that E[  Xn 2 ]< ∞ and convergence means:

E[ Xn -X 2 ]  0 as n ∞.

A ‘Stochastic Processes’ is a family of random variables { Xt } tεT where
each random variable is defined on the measure space (Ω, ℑ  ). Thus we have a map:

Xt: W ℜ           Xt: w  X(w,t)

Such that Xt
-1(-∞,z) ε ℑ  for all z ε ℜ , for every tεT Xt is a measurable

function.
The map t X(w,t) :T  ℜ  is a path. In the work every path is continuous,

although it is differentiable nowhere. In other words the path of a realization is a
graph that is continuous but is an infinitesimally broken line. An example of a
stochastic process that has proved to be a workhorse is the Wiener process.

1.3 Wiener processes

In discrete time, we talk about white noise as a family of uncorrelated random
variables, with zero mean and constant variance. In continuous time its counterpart
is a Wiener process, which consists of a time path of random variables W(t) evolving
as time goes by, and its motion obeys the idea of stationary and independent
increments.

The most interesting analysis is for very short time intervals. We denote
infinitesimal time intervals as ∆t and look at the increments ∆W(t): ∆W(t)= W(t
+∆t)- W(t) where the time interval ∆t is small. The Wiener process is the essential
ingredient for studying stochastic processes; concepts are generated from this notion,
therefore we must formalize the following idea: a Wiener process { W(t) }t≥ 0 defined
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in a probability space (Ω,F, P) is a continuous curve, that begins at the origin in
which for each time t?0 it presents independent and stationary increments.

A Wiener process (called ‘Standard Brownian Process’ as well) in the
interval [0,T] is a stochastic process {W(t), 0 ≤ t ≤ T} with the following properties:

1. W(0)= 0.
2. Correspondence t—>W(t) is with probability one, a continuous curve in [0,T].
3. For any k and for any finite collection 0 ≤ t0 ≤ t1 ≤ t2 ≤ t3 ≤ …≤ tk ≤ T, the

random variables called the process increments are independent, which means:
{W(t1)-W(t0), W(t2)- W(t1), W(t3)-W(t2), …., W(tk)- W(tk-1)} are independent.

4. W(t)-W(s) is distributed under the normal N(0,t-s) 0≤s<t≤T.

Some consequences of the definition are that:

1. W(t) ~ N(0,t) for 0 ≤ t ≤ T.
2. ∆W(t) = √∆t Z where Z ~ NID(0,1).
3. ∆W(t) is independent from ∆W(t+∆t).
4. ∆W(t) is independent from W(s)=W(s)-W(0) for s < t.

See Glasserman Paul.(2004) and Karatzas and Shreve (1991). An important
fact is that the continuous trajectory of a Wiener process is not differentiable, except
in a set of probability zero, which means that they are not smooth curves, but
infinitesimally broken.

Because W(t) ~ N(0,t), we take W(t)= ( X(t) -µt) / σ and get X(t) = µt + σ W(t).
Therefore X(t) ~ N(µt, σ2t). Note that X(t) is the solution of the stochastic

differential equation: dX(t) = µdt + σ dW(t). For short time intervals, the Wiener
process is such that, if s< t then W(t) - W(s) is distributed under the normal N(0,t-
s), in addition to the fact that these increments are independent thus we should not
be concerned for a correlation structure among the increments.

To generate a simulation of a simple Wiener processes W(t) this may be
done as suggested by Glasserman (2004: 81). Take first independent standard nor-
mal variables Z1, Z2, …, Zn and set t0=0, W(0)=0, secondly subsequent values are
taken from the recursions:

W(ti+1) = W(ti) + √ (ti+1 - ti) • Zi+1       i=0,1, 2,…,n-1

Now to generate not only W(t) but dX(t)= σ dW(t) we do a small change
including a given standard deviation different from unity, taking σ = 13.96 we get:
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The Wiener process is usually taken with a drift parameter denoted by µ
and its dispersion changes by a ó factor, thus its equation of motion is:

dX(t) = µdt+σdW(t)

Where:
W(t) = is a simple Wiener process.

Values µ =0.15 y σ = 0.96 are taken. The following recursions are used:

1111 )()()( ++++ −+−+= iiiiiii ZtttttXtX σµ

1.4 Wiener geometric process

This is a very important process because the asset yield is critical in every investment
decision. The movement equation is given by:

dX(t) = µ X(t) dt+σ X(t) dW(t)

Which is equivalent to:

dX(t)/ X(t) = µ dt+σ dW(t)

111 )()(
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The component dX(t)/ X(t) is the yield. The models says that the yield
moves around a mean level µ with a standard deviation of σ. The characteristics of
the simple Wiener process are inherited by the yield.

To perform simulations we start at X(0) = 0.01 with the values µ =0.15
and σ = 1.96, and we use the following recursion:

1111 )())(()()( ++++ −+−+= iiiiiiiii ZtttXtttXtXtX σµ

We have to move from the Wiener process dX(t) = µdt + σ dW(t) to
encompass larger class diffusion processes; the aim is to be able to manage processes
by selecting a formula for: µ(Xt,t) and σ(Xt,t) at the diffusion equation:

dX(t) = µ(Xt,t)dt+σ(Xt,t)dW(t)

The Ito lemma is so important because it gives the answer to a very gene-
ral class of diffusion processes by invoking a function G(x,t) with first and second
continuous derivatives.

2. Diffusion Processes, the Ito equation

To exploit all the possibilities that we have at hand we need to lean on the general
case which should now be considered.

Instead of thinking the relation dX(t) = µdt + σ dW(t), we want to analyze
the processes:

dX(t) = µ(Xt,t)dt+σ(Xt,t)dW(t)

Graph 2
Geometric Wiener Processes
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These are called ‘diffusion processes’. In order to build the simulation,
the discretized version in the interval [0,T] is required. To do it, we take m length
subintervals ∆t = T/m and at each subinterval [t, t+∆t] we take an evaluation from:

dX(t) = µ(Xt,t)dt+σ(Xt,t)dW(t)

After some calculations one arrives at the relation:

X(t+∆t) = X(t) + µ(Xt,t) ∆t+σ(Xt,t) √∆t Z, where Z~ NID(0,1)

This procedure is known in the literature as the Euler Method.
A point X(0)=X0 is taken, for the moment t=0 , to be able to start the

iterations and moving through the interval [0,T], use the recursions:

X(t+∆t) = X(t) + µ(Xt,t) ∆t+σ(Xt,t) √∆t Z, where Z~ NID(0,1)

An outstanding result in this subject is the extremely fundamental research
of Kiyoshi Ito (Oksendal, 1995).

2.1 Ito lemma

Let the process: dXt = µ(Xt, t)dt+σ(Xt,t)dWt and take any function G(x,t) with the
first two continuous derivatives, now define the new process Yt= G(Xt,t) then {Yt}
is a Ito process and is given by:

tt dW
x
Gdt

X
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x
G
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GdY σσµ
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To make the calculations the following Ito rules are used:

dt*dt = 0
dt*dWt = 0
dWt*dt = 0

dWt*dWt = dt

The Ito lemma does almost all the work , the researcher only has to propose
the function G(x,t) and immediately knows that:
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1. The mean component that explains the displacement in the new process is:
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To simplify matters, the discrete version of the lemma for the process Xt:

dXt = µ(Xt,t)dt+σ(Xt,t)dWt

is given by:

∆Xt = µ(Xt,t) ∆t+σ(Xt,t) ∆Wt

And for the process Yt:

tt dW
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3. Forward Contracts and Black-Scholes

To make apparent the central place the lemma entails, we do a couple of exercises
to show its practical use: with a forward contract and the well known result of
Black-Scholes on options.

‘Forward Contract’ is given by the rule: F = Ser(T-t), one gets the partial
derivatives very easily:

)(
2

2
)( 0 tTtTr re

t
F

S
Fe

S
F −− −=
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∂
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We start with a Geometric Brown model, because we have our eyes on
the yield, with a expected yield of µ and a volatility of σ to specify the evolution of
the spot price St: dSt = µStdt+σStdWt.

Apply Ito lemma and conclude that the price of the forward contract:

[ ] t
tTrtTrtTr SdWedtrSeSedF σµ )()()( −−− +−=

Simplifying we obtain:

[ ] tσFdWFdtrµdF +−=

Easy work! It is now proved that with both the spot St and also Ft the
forward price are geometric Brownian motions. St has an expected yield of µ, and
Ft of µ-r.

3.1 Black-Scholes

A non trivial application of the Ito lemma is found in the work of Black-Scholes,
we use the argument in Rue Tsay (2002, p. 232), as also in Hull (2002, p. 219,
220,221). The importance to include this material is because it exemplifies clearly
a main procedure in the field: start with a known diffusion process, say a Wiener
process, apply Ito´s formula and from the newly got process get a partial differential
equation that its solution is the answer been searched. As the reader may see the
lemma does a very important job.

Supposing that there is no arbitrage, the asset price follows a Brownian
motion and the lemma is used to get the price of an option call denoted by ft, this
price depends on the spots price and is c time varying thus ft=f(Pt, t), We use the
discretized version to show as well how to deal with this aspect, to be able to apply
to the Ito lemma the functions: ∂ft/∂t, ∂ft/∂Pt, ∂2ft/∂2t, ∂2ft/∂2Pt, ∂2ft/∂Pt∂t. All exist
and are continuous functions.

The price of the asset is given by:

A) ∆Pt = µ(Pt,t)Pt ∆t+σ(Pt,t)Pt ∆Wt

Apply Ito lemma:

B) tt
t
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Needless to say that the time intervals are very small (m is large).
Noting that the term ∆Wt is the same in both equations, we can look for a

portfolio that does not contain the Wiener process, thus the portfolio is selected
under two conditions:

It has the value of -1 e in the derivative short asset, and has the value of
∂ft/∂Pt in the stock of the subjacent stock. «The holder of this portfolio is short one
derivative security and long an amount ∂f/∂S of shares» Hull (2002, p. 220).

Denoting according to the value of the portfolio we have:

Vt = -ft + (∂ft/∂Pt) Pt

The change in its value ∆Vt along the moment ∆t is given by:

∆Vt = - ∆ft + (∂ft/∂Pt) ∆Pt

Substituting from the above we have:

∆Vt = ( - ∂ft/∂t - (1/2)(∂2ft/∂2Pt)(σPt)2 ∆t

By the way, the portfolio that has been selected in this last relation does
not contain the term ∆Wt, under the hypothesis of no arbitrage, thus the portfolio is
risk free along the interval ∆t.

By now we have just to collect the results and we are finished,
Therefore, along the short instant of time Ät, the portfolio yields the same

rate of return as any other risk free assets available in the market, so in order to
fulfill the condition: ∆Vt = r Vt ∆t, r is the risk free rate.

Again substitute to get:

∆Vt = (-∂ft/∂t -(1/2)(∂2ft/∂2Pt)(σPt)2 ∆t = r (-ft +(∂ft/∂Pt)Pt) ∆t=

       = r Vt ∆t

          = (∂ft/∂t +(1/2)(∂2ft/∂2Pt)(σPt)2 = r (ft -(∂ft/∂Pt)Pt)

We have obtained a basic partial differential equation in Black Scholes
theory.

t
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To solve this partial differential equation we require a boundary condition.
After known procedures the solution for an European option which can be adapted
for an American option also is:

f = max(Pt - K,0)     when t=T

The price for the call option at the moment t is:

ft = exp[-r(T-t) ] E[max(PT - K,0) ]

It can be shown that in a neutral risk world we have:

∫
∞

=
K

TTTt dPg(PK-Pt-Tr- exp f ))()]([

Here g(PT) is the density function of the random variable PT:

ft = PtΦ(h+) - K exp[T - t)]Φ(H-)

Φ(x) is the normal distribution function evaluated at the point x.

tT

tT/rK/PLn
h t
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−++
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h t

−
−−+

=−
σ
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3.2 Simulating Stochastic Processes

Now we turn towards generating realizations of a process by computer simulations.
We know that a diffusion process has two main components, the mean and the
variance, which usually are time dependent.

dXt = µ(Xt, t)dt+σ(Xt,t)dWt
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Selecting formulations for the mean µ(Xt, t) and the variance σ(Xt, t) one
gets a specific diffusion process. Everyday huge amounts of new processes appear
in the literature on the subject, capable of explaining any aspect of finance dynamics.

3.3 The Ornstein-Uhlenbeck Process

This process is very important in financial theory because it has an outstanding
property: mean reversion, that is X(t), tends to oscillate around E[X(t)].

Defined as the process X(t) whose trajectory is guided by:

dX(t) = -λ X(t)dt+σdW(t) where λ > 0

 [it is also may defined as d X(t) = (m-λXt)dt+σdW(t)].

This model is used to represent assets that fluctuate around zero, because
if X(t)<0 assumes negative values, the factor -? intervenes making dX(t)> 0 thus
X(t) begins to grow.

Similarly if X(t)>0 assumes positive values, the factor -λ intervenes
making d X(t)< 0 thus X(t) begins to decrease; this is the central idea of the mean
reversion. Consult Neftci (2000, p.271) and Gourieroux and Jasiak (2001, p. 249,
289).

The process Ornstein-Uhlenbeck has the discrete version:

X(ti+1) =X(ti) -λX(ti)*(ti+1-ti) +σ*v(ti+1-ti) *Zi

With: λ = 10.84 and σ = 0.96 are taken.

Graph 3
Ornstein Ulhenbeck Processes
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Now, if we take:

µ(Xt,t)= a(b – Xα
t)

σ(Xt,t)= σ Xβ
t

We get a remarkable family of stochastic differential equations see
Venegas(2006, p. 571).

dX(t) = a(b – Xα
t)dt + σ Xβ

t dW(t)

A group of different processes according to the alfa and beta values, the
research has shown these various models which are remarkable because of their
properties.

Note that Hull (1993, p.404) refers to the Hull and White model as:

dX(t) = (b(t)– a X(t))dt + σdW(t)

Merton (1970)
Merton used the Wiener process denoted by ? and its dispersion changes

by a ó factor, thus the equation of motion is:

dX(t) = µdt+σdW(t)

Table 1
Kit of useful Diffusion processes

Merton (1970)

Vasicek (1977)

CIR (1985)

Ho y Lee (1986)

Longstaff (1979)

Hull and White (1990)

α = 0 β  = 0

α = 1 β  = 0

α = 1 β  = ½

α = 0 β  = 0

α = ½ β = ½

α = 1 β  = 0

µ + 1

b

b

2

b

bt

1

a

a

ht

a

a

Model Parameters b at Process

dXt =  mdt + sdWt

m, s are constant
dXt = a(b – rt)dt + sdWt

a, b, s are constant
dXt = a(b – Xt)dt +svXt dWt

a, b, s are constant
dXt = htdt + sdWt

s is constant
dXt = a(b –vXt)dt +svXt dWt

a, b, s are constant
dXt = a (bt –Xt) dt +sdWt

bt, s are a time function

Source: Venegas (2006, chap. 53: 572).
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Vasicek (1977)

This model has the following formulation:

dX(t) = a(b – Xt)dt + σ dW(t)

Where:
a> 0, b> 0, σ> 0 are positive constants.

This process has mean reversion, because it belongs to the Ornstein-
Uhlenbeck family, specifically:

dX(t) is positive if b > X(t) thus dX(t) = a(b – X(t))dt is positive, therefore X(t)
increases.
dX(t) is negative if b < X(t) thus dX(t) = a(b – X(t))dt is negative, so
X(t)decreases.

The speed of convergence hinges on the parameter a, while the level where
equilibrium is given by the parameter b.

Where:

W(t) = is a simple Wiener process; and

Values µ =0.15 y σ = 0.96 are taken.

The following recursions are used:
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Merton Processes
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CIR (1985)
CIR is an acronym of the Cox Ingersoll and Ross process, which is very popular in
the literature.

The CIR process which is generated from the chart taking:

α = 1 β = ½ µ(X(t),t) = a(b – X(t))    y σ(X(t),t)= σ √X(t)

dXt = a(b – Xt)dt +σ√Xt dWt

This is one of the first interest rate equilibrium structure models in
continuous time of a factor that describes the rates of temporary structures. Assuming
that these follow a stochastic process where their parameters are a function of the-
mselves but they are independent in time.

In this model the long-term level b is where the process is approaching
and the force with which the process Xt is being lead is the parameter a. In this
model it is possible that X(t) takes negative values.

The discretized version is:

X(ti+1)=X(ti)+ a(b – X(ti) )*(ti+1-ti) +σ*√(ti+1-ti) *Zi+1

Where:
a, b, σ are positive constants; and
Values are taken for the simulations, a = 3.0, b = 0.5, σ = 5.4.

Graph 5
Vasicek Processes
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This model captures the short-term interest rate dynamics with mean
reversion, and it is based upon the following diffusion equation:

dX(t)= a(b- X(t))dt+σ√X(t)dW(t)

Where:
a, b, σ = are constant parameters;
a = is the force with which rt trajectory is led towards the equilibrium level b.

The CIR process has the property that if r(0) > 0 therefore r(t) ≥ 0 all t and
also 2ab ≥ σ2 therefore r(t) > 0 all t with a probability one consult Glasserman(2004,
p. 120).

The most important thing provided by this model is that the term structure
always generates positive interest rates, differently from the model proposed by
Vasicek (1977) that can generate negative interest rates with a positive probability
for some parameter values;

We consider a = 2.5, b =3.5, σ = 0.96. By using the discretization, we get:

1111 )()))((()()( ++++ −+−−+= iiiiiiiii ZtttXdtttXbatXtX σ

Graph 6
Cox Ingersoll Ross Processes
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Longstaff (1979)

The Longstaff model is: dXt = a(b –vXt)dt +?vXtdWt
By using the discretization, we get:

iiiiiiiii Ztt)t(XtttXbatXtX −+−−+= +++ 111 ))()(()()( σ

Ho y Lee (1986)

The Ho-Lee model is dX(t)=g(t)dt+σdW(t) where g(t) is a deterministic function
of time. By using the discretization, we get:

iiiiiiii ZttdtttGtXtX −+−+= +++ 111 ))(()()( σ
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Graph 8
Longstaff Processes
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Hull and White (1990)

The Hull-White process we will use, is taken from Hull (1993, 2nd edition p.404).
dXt = a(bt –Xt) dt +σdWt

It’s known that this model can be interpreted as the Vasicek model with a
time mean reversion dependent on the rate a.

dX(t) = (Q(t)-aX(t))dt +σdW(t)

Where:
a , σ = are constant.

One might take Q(t) as a polynomial in t of a q grade so that:

Q(t)= b0+b1t+b2t2+b3t3+b4t4+…+bqtq              bq≠0

The most frequent case in applications is when q= 1, therefore we are
interested in the process: dX(t) = (b0+b1t - aX(t)) dt +σ dW(t).

The discrete version for simulations is:

X(ti+1)= X(ti)+ (b0+b1ti - aX(ti))(ti+1-ti) +σ*√(ti+1-ti) *Zi+1

a = 1.0, σ= 2.06,          b0= 0.1026,          b1 = 0.0003078

Graph 9
Hull White Processes
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4. Multiple dimensions

It is interesting to analyze a couple of examples of processes that are jointly generated
under the same dynamics; they are called multivariable processes.

The most natural one is the multivariate standard Brownian motion and a
second one is a multivariate Ornstein-Uhlenbeck process.

We call a vector process W(t)= ( W1(t), W2(t), …,Wd(t) )’ a ‘multivariate
standard Brownian motion in ℜ d, if W(0)=0, W(t) has continuous sample paths
with independent stationary increments; W(t) - W(s) ~ N(0, (t-s)•I)  0 = s < t =T

I is the identity dxd matrix. Note that this definition implies that each
component Wi(t) is a standard one dimensional Brownian motion and that Wi(t)
and Wj(t) are independent for different values of i and j.

Now take any vector µ in ℜ d and a dxd a symmetric positive definite
matrix Σ. A multivariate Brownian motion in the space ℜ d with drift µ and covariance
matrix Σ, is given by continuous sample paths such that X(t) - X(s) ~ N((t-s•)µ, (t-
s)•Σ)

The seed is taken as W(0)=0.
Take a matrix dxd called B such that BB’ = Σ

Thus the process defined as X(t)= µ•t+B•dW(t) is a multivariate Brownian
motion, and it is possible to extend this class of processes by taking time variable
parameters:

X(t)= µ(t)•t+B(t)•dW(t)       note that       B(t)B(t)’ = Σ(t)

To build such a process in the computer take first Z1, Z2, Z3,…, Zn

independent N(0,I) in ℜ d, define W(0)=0 and take the recursions

X(ti+1) = X(ti)+µ•(ti+1 - ti)+√(ti+1 - ti) •B•Zi+1 for i=0,1,2,3,…,n-1

The matrix B is such that BB’ = Σ
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The Ornstein-Uhlenbeck process is a direct extension of the univariate
case.

Take a matrix dxd called B such that BB’ = Σ
Define the process X(t) whose trajectory is guided by:

dX(t) = - λ•X(t) dt+BdW(t) where the vector ? has each component positive
that is: λ = (λi), λi > 0 and λ•X(t) = (λi•xi(t) ) is a ‘multivariate Ornstein-
hlenbeck motion’.

To build such a process in the computer take first Z1, Z2, Z3,…, Zn

independent N(0,I) in ℜ d, define W(0)=0 and take the recursions:

Graph 10
Multivariate Wiener Processes
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Multivariate Wiener Processes
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X(ti+1) = X(ti) - λ•X(ti)•(ti+1 - ti) + √(ti+1 - ti) •B•Zi+1    for i=0,1,2,3,…,n-1

The matrix B is such that BB’ = Σ

Graph 12
Multivariate Ornstein-Uhlenbeck Processes

Graph 13
Multivariate Ornstein-Uhlenbeck Processes
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Conclusions

Stochastic processes is a rich field with ample possibilities, although there is cost
to enter into the topic: high level in the quantitative skill and knowledge in the
subject of modeling and simulating a model using the computer, the reward is a
much more deep understanding of what is «Stochastics». Finance requires these
notions in which chance and random behavior occur every day, but as well Ma-
croeconomics nowadays is modeled by using the notion of probable outcomes and
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erratic phenomena. Therefore the scholar in Finance Economics is compelled to a
much more higher level in Mathematics than ever before. We have seen that the
natural path to knowledge is to rely in geometric visualizations to understand
probabilistic dynamics. Is as Mankiw(2006) says: an economist is a (social) scientific
and a (social) engineer, neither side dominates the other, a proper balance is required.
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