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1. Overview

1.1 Preliminaries

The Great Recession of 2008 demonstrated the vulnerability of financial systems 
around the world. The trigger for the deepest financial downturn ever since the Great 
Depression of the 1930’s was the meltdown of complex financial derivatives which 
buttressed balance sheets in firms and households from Wall Street to Main Street. 
However, even when the intuitive causes for the debacle are well known, standard 
economic theory was not able to predict how massive, protracted and contagious 
the crisis would be. Banks across the United States and Europe, heavily indebted in 
risky assets that lost most of their value over a period of rapid readjustment, were 
unable to cope with the consequences of their past, risk-seeking behavior.

Although this financial crisis will be studied for years to come, we wish to 
propose a different approach. Indeed, part of the problem rested in the complexity 
of these new financial instruments. Through securitization, structured finance was 
able to substitute largely diversifiable risks for others that were highly systematic. 
Without a doubt, mindless securitization gave these assets less of a fighting chance 
to survive a system-wide severe economic downturn relative to other, less sophis-
ticated traditional corporate securities of equal rating (Coval, Jurek and Stafford 
2008). When narrow non-systemic considerations are single-handedly used to 
prompt investing behavior (like during asset bubbles), these assets can provide a 
nutrient-rich environment for financial contagion.

For this reason, we focus on a specific part of the derivatives market, 
namely the Credit Default Swap (cds) market to see how financial contagion could 
spread. Swap contracts simply call for “An exchange of a series of cash flows” 
(Bodie, Kane and Marcus 2005: 850) depending to forward contract claims and 
conditions. On this note, cds contracts are a specific kind of swap:

...Specified over a period … with its payoffs linked to a credit event such as a default on 
debt, restructuring or bankruptcy of the underlying corporate or government entity. The 
occurrence of such a credit event can trigger the cds insurance payment by the protection 
seller who is in receipt of periodic premia from the protection buyer (Markose, Giansante, 
Gatkowski and Shaghagui 2010: 17)
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We can see in Fig. 1 how cds work. A cds buyer (B) lends to a reference 
entity which issues bonds (or A). However, in order to “insure” against default from 
A, B buys a cds from C (or an insurer, exemplified above by the now notoriously 
famous acronym of aig). B will pay to C a premium based on the underlying debt 
exposure to A, and C will pay to B in case A defaults on its loan –this creates a 
“notional link” between C and B in case of default.

The problem occurs when we introduce another agent, without underlying 
exposure to A (or D). If B sells its cds to D without having any financial links or 
commitment with A, D will receive the “notional link amount” in case A defaults, 
without holding any bonds or debt with respect to the underlying. This creates a 
potential for a strategic conflict of interest: given an assessment of A’s exposure, and 
whether they deem it sustainable or not, companies might be prompted to short–
sell A’s stock in order to weaken its balance sheet and drive down its price. If the 
company, given its existing equity, cannot meet its margin-calls to roll-over loans, 
this could trigger a default. So, a company which holds A’s stock might trigger this 

Figure 1 
How Credit Default Swaps work

Source: Markose, Giansante, Gatkowski and Shaghagui 2010:17.
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strategy if it deems that its exposure in equity is less than the potential reward in 
redeeming the cds in case of default.

1.2 Financial network theory and epidemiological models

1.2.1 Theories of financial networks and contagion

Financial network theory is a new field in economics, one which is gathering in-
creased attention by researchers and policy-makers. Allen and Gale (2002) proved 
using a small model with four banks that contagion depends most importantly on 
the interconnection design between banks. Complete networks where all banks 
diffuse the amount of deposits held by all other banks cause financial shocks to be 
localized and easily contained. When networks are incomplete, namely when debt is 
concentrated between a few counter-parties, the system proves to be more fragile.

Haldane (2009) points to new insights on the robustness of networks, 
borrowing heavily from more in-depth studies which proved that the fragility of 
what we thought were robust biological ecologies, like rainforests:

Until recently, mathematical models of finance pointed to the stabilizing effects of finan-
cial network completeness. Connectivity meant risk dispersion. Real-world experience 
appeared to confirm that logic. Between 1997 and 2007, buffeted by oil prices shocks, 
wars and dotcom mania, the financial system stood tall; it appeared self-regulating and 
self-repairing. Echoes of 1950s ecology were loud and long... The past 18 months have 
revealed a system which has shown itself to be neither self-regulating nor self-repairing. 
Like the rainforests, when faced with a big shock, the financial system has at times risked 
becoming non-renewable.

In Haldane (2009) four mechanisms seem to be important, and we will 
try to explain them briefly below to later link them with our computer model. He 
stresses that connectivity and stability, feedback, uncertainty and innovation are 
four mechanisms that are at play in financial systems.

With regards to connectivity, financial networks seem to exhibit a tipping 
point or threshold. Before the critical value, connectivity supports robustness, but 
beyond it engenders a cascade effect. Feedback, moreover, has a structural and a 
sociological component – like in epidemiology. Mortality rates in a disease are 
fixed by the rate of predation of the infecting agent within the host. Nonetheless, 
transmission varies depending on the channels where contact is allowed, appropriate 
or demanded by physical context or custom.
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Evolutionarily, the transmission responses of “hide or flight” are currently 
taking two forms in current financial markets: 1) hoarding liquidity (or hide assets) 
and/or 2) buying “safer” assets, like commodities, gold or silver (flight to assets). 
The graph below shows how after the initial expectations shock, the appetite for 
“safer” assets (gold) and liquidity (cash) accelerated during the recession. Although 
the flight to gold might be a debatable strategy, since it may be fueling another boom-
bust scenario, hoarding gold is seen by many investors as a way to hedge against 
the prospect of devalued currencies, given the massive injections in currencies.

Figure 2 
Cash Assets in US Banks (millions of US$, 3 month moving average) and 
price (in US$) of Gold spdr Exchange Traded Funds per Quarter 2005 - 

2010. nber recession period shaded gray

Source: Federal Reserve of the United States, Flow of Funds (L. 109 Q) and Yahoo 
Finance.

With respect to uncertainty, financial networks generate chains of claims. 
During times of financial duress and chaos, these chains act as channels for true 
counter-party exposures. Depending on who or what industry is at the end of the 
chain, these channels can amplify or restrict uncertainties. With respect to the cds 
market specifically, Haldane illustrates:
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Consider the case of pricing in the cds market – an inherently complex, high dimension 
market. In particular, consider Bank A seeking insurance from Bank B against the failure 
of Entity C. Bank A faces counterparty risk on Bank B. If that were the end of the story, 
network uncertainty would not much matter. Bank A could monitor.
  Bank B’s creditworthiness, if necessary directly, and price the insurance accordingly. 
But what if Bank B itself has n counterparties? And what if each of these n counterparties 
itself has n counterparties? Knowing your ultimate counterparty’s risk then becomes like 
solving a high-dimension Sudoku puzzle. Links in the chain, like cells in the puzzle, 
are unknown– and determining your true risk position isthereby problematic (Haldane 
2009: 15).

Finally, diversity in the financial landscape has been overrun by the 
issuance of debt. Whereas in the past financial institutions would raise money 
to issuing shares (the equivalent of diversity in the financial eco-system), the reti-
cence to dilute earnings amongst a greater pool of property claimants caused for 
market capitalization for financial firms to fall almost 90% in the run-up to the cri-
sis  (Haldane 2009: 17). Financial innovation was responsible for this phenomena, 
since the securitization of debt, as substitute for equity, brought great returns at the 
expense of increasing risk.

All this led to the creation of robust-yet-fragile systems: “while the pro-
bability of contagion may be low, the effects can be extremely widespread when 
problems occur” (Gai and Kapadia 2010: 5). In a highly connected system, losses 
by a counter-party could be more easily absorbed by other entities. In this case, 
more connections could lower the probability of contagious default. But these same 
number of financial linkages can increase the potential for contagion if assets, when 
toxic, are heavily discounted and this ripples throughout the network. If institutions 
are lucky enough to survive the first round of defaults, the contagion effects around 
their network could trigger a second-round of defaults which could prove difficult 
to avoid.

1.2.2 The Susceptible-Infected-Recovered Model as a benchmark for financial 
contagion

The literature on financial crisis in networks doesn’t talk explicitly about the SIR 
model, yet it hovers in the subtext. Originally devised in 1927, the sir canonical 
model seeks to explain the spread of a disease in a population. There are three types 
of individuals: Susceptible S (t), Infected I (t) and Recovered R (t). An infected in-
dividual contacts susceptible individuals at a rate c per susceptible individual, and 
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(a) is the probability of disease transmission upon contact. Individuals recover at 
rate ρ and become susceptible at rate σ. If we include a growth rate of agents within 
the system (θ) and a death rate in a system δ, we can define the model by way of 
three differential equations as follows:

Eq.1[ ]

dS
St

= θ − dS (t ) − acS (t ) I (t ) + σR(t )

dI
dt

= acS (t ) I (t ) − δI (t ) − ρI (t )

dR
dt

= ρI (t ) − σR(t ) − dR (t )

,

,

,

For our model, we used a benchmark sir model as a control experiment 
and first approximation for financial asset contagion – we will call this model finsir 
v.1. It served only as a preliminary experiment for the development of finsir and to 
assess and devise the current model of financial networks, finsir v.1 suffered from 
many drawbacks, namely the justification of contagion of assets by mere proximity 
and mingling, with no reference to firm balance sheets. Nonetheless, the model 
reproduced the cyclical dynamics of the sir canonical model, which are of interest 
and are reproduced in an example below.

Figure 3 
Graphical User Interface (gui) of finsir v.1. In NetLogo
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Of interest is the sub-chart above “Type of Assets in Market” which dis-
plays some cyclical dampening and evolutionary equilibration, achieved at a given 
amount of “toxic”, “susceptible” and “recovered” assets. As we will see below, this 
sort of dynamics were not easily modeled in networks given overarching assumptions 
about the financial “death” and “recovery” of the firm. Yet, insights of the model 
above still lie in the subtext of finsir v.2.

2. Entities and state variables

For finsir v.2, instead of using a series of disaggregated homogenous assets floating 
in some Brownian motion “petri dish” context, agents are financial firms with an 
underlying debt claim to a single firm. With regards to Figure.1 above, all firms 
are agent B’s that have a debt with respect to a single agent A (in the model they 
are labeled as firms-exposure). Also, we include agents like D, which have no un-
derlying exposure with respect to A, and enter the cds market betting on whether 
A will default or not on its payments (we call these firms-margin). Both types of 
firms have assets, which grow at a fixed yield. The price of the cds, or the spread, is 
determined by a special auto-regressive process (more on that will be said below). 
Firms-exposure as stated above, keep an exposure with respect to the underlying 
firm while firms-margin borrow on the margin. This margin, as commonly defined, 
is the portion of the purchase price contributed by the firm’s assets, while the re-
mainder is borrowed from the broker. This margin rate sets the amount of debt the 
firm can handle. Taken as a whole, this asset/debt relationship make up the firm’s 
quasi-balance sheet. Assets and exposures are randomly assigned.

Furthermore, all firms are enabled to be pessimistic or optimistic based on 
a cds-discount factor (cdf), state variable that in turn will inform their insertion in 
the CDS market as sellers or buyers. This cdf will be high for pessimists and low for 
optimists, and in relative terms, higher for sellers and lower for buyers. This factor 
will serve to discount or appreciate the spread of the cds, depending on the bullish 
or bearishness of the financial firm. For example, if the true price of the spread is 
a 100 basis points (with respect to the underlying exposure), based on the cdf the 
price would be −cdf ×100. Optimists will have a floating number cdf between 0 and 
1, while pessimists will have a floating number cdf between 1 and 2.

Buyers and sellers are determined in the market by a simple algorithm:

                    [Eq. 2] Pricecds - cdf.Pricecds > Pricetransaction cost 
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This states that if the spread (or price) of the cds minus its bearish (or 
bullish) discounted (or appreciated) value is greater than the price of the market 
transaction costs, the firm will become a buyer of cds, and if not, the firm will be-
come a seller. The firm will value more the cash flow for granting insurance, since it 
does not believe the underlying will default. Indeed, this is a simplifying assumption 
of how the cds market works, but it captures a lot of the financial literature debate 
on swap markets.

The financial literature posits that swap market contracts are founded 
in “comparative advantages” that firms enjoy with respect to financing costs. For 
example, with respect to interest-rate swaps, lower rated companies may enjoy 
comparative advantages with respect to variable interest rate markets, while higher 
rated firms enjoy better fixed interest terms (Hull 2002: 159). These advantages 
induce firms to transact amongst themselves, if conditions are right. With respect to 
cds markets, firms involved do not need to be bearish or bullish only on a matter of 
pure expectations, but given their ratings, the structure of their assets and liabilities, 
and how they face day-to-day cash flow operations. Agents create financial links, 
depending on what side of the transaction they find themselves. These links report 
the notional value of the cds exposure (the countervailing cash flow) and allow 
for cash flow payments based on the aforementioned exposure to be accrued to the 
counter-party at each time-step. Furthermore, links faced time constraints given 
their maturity.

Given these industry variables, firms become “toxic” (or infected) and 
“recovered”, using some insights of the SIR model explained above. However, 
there are some importance differences: contact in financial firms, as a function of 
their notional links, is not as clear-cut as in biological models. Biological models 
treat individuals as entities, infected or not, and abstract from the resource war 
occurring in their immune systems. In financial firms, the internal processes where 
their balance sheets are affected are central to the model. For this reason, we must 
try to keep track of the infection of must cause very distinct consequences for the 
firms quasi-balance sheets.

When a firm becomes toxic, it heavily discounts cds spreads and also, 
the valuation of its assets by way of a toxic discount factor, or tdf. This does not 
mean that firms discount the value of their assets, but that their assets lose value, 
since these are no longer buttressed against the insurance provided by a cds asset. 
Because of this, the equity-to-exposure ratio decreases, but the firm does not beco-
me automatically bankrupt (it will do only after it has passed a given threshold, as 
stated below). This allows for some gray area situations, where firms are allowed 
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to continue in a zombie-like state, as demonstrated in some model runs – as shown 
below in Figure 8.

For example, in the model, one of the firms randomly becomes “toxic”. 
This means that its assets decrease in value by way of what can be a random occu-
rrence like bad management in other branches of its operations, nefarious business 
practices, etc. Therefore, its payable exposure of cds to counter-parties decrease 
in value, as the “toxic” firm cannot meet its obligations. Its cds no longer buttress 
the valuation of assets in counter-parties balance sheets. Furthermore, in doing so, 
it changes its market dynamics and its probabilities of becoming a seller increase 
as to raise money to meet payables, causing a cascade effect with respect to asset 
valuation (although this feedback effect is notincluded in the current model) as 
more firms press to sell assets.

Recovered firms are those who are able to muster a comeback effort, 
with a probability of recovery γ. However, this recovery is not phenotypical in na-
ture – it affects the discounting of assets within the firm. For example, even in dire 
systemic circumstances, assets can have a recovery cost. Although counterparties 
may fail and go bankrupt, asset value can recover when claims become unwound 
and property rights are clearly delimited between parties to flush out uncertainty 
– as Haldane noted above. Asset prices can stage a comeback, and in doing so, 
help firms achieve some breathing room to pay creditors and keep in business. For 
this reason, recovered firms increase their asset valuation randomly within a range 
greater than the “toxic” discount. Furthermore, also wired in the model, we have 
a constant stream of income from bond yields held by firms, which contribute to 
this re-floating process.

3. Process overview and scheduling in finsir v.2

There are two main external processes in finsir v.2: The auto-regressive spread 
process and the market-maker process. Furthermore, agents run other processes 
internally: a survival process, based on the leverage ratio of the firm, determines 
whether the agent goes bankrupt and an immune response process which allows 
for the firm to recover, given a constant stream of income, as all firms are assumed 
to hold yield-generating bonds.

Spreads in finsir v.2, or the price of cds, are determined in the model by 
a special auto-regressive process. The pricing process for spreads is a complicated 
affair, since spreads not only reflect the most immediate price, but a forecast of prices 
given current information. Below we present the distribution of the iTraxx Europe 
cds Index, and one and two year spreads of the indexed companies.
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Figure 4 
One and Two Year Spreads for companies in the iTraxx Europe cds Index 

Source:Wilmott Forums

Figure 5 
Distribution of 10 Year Spreads for the iTraxx cds Index against the gamma 

distribution

Source: Wilmott Forums.
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Table 1 
Summary Statistics for iTraxx Spreads in Figure 5.

Mean Median Minimum Maximum
273.166 276.325 181.831 340.000
Std. Dev. C.V. Skewness Ex. Kurtosis
49.0424 0.179533 -0.416366 -0.69

Although the gamma distribution fit above is barely an approximation, 
it is better than the one offered by a normal distribution. Since real-time cds data 
information is hard to come by, we will use the statistics above as a rough approxi-
mation to compute our gamma distribution.

For our spreads we will define an AR process with a random gam-
ma distribution where the shape parameter will be, using Table 1 above, 
θ =mean × mean

var iance
⎛ 
⎝ 

⎞ 
⎠  

and the scale parameter k= 1
variance
mean

⎛ 
⎝ 

⎞ 
⎠ 

 
 
but with an inde- 

terminate AR parameter - fluctuating between 0 and 1. For this reason, the process 
will exhibit an oscillation between a unit root and a stationary process. Below is an 
example of the spread output for 500 time steps, as computed for finsir v.2.

The other important process for the model is the market-maker process. 

Figure 6 
Distribution of Spreads for the finsir v.2 model

Source: FINSIR v.2 Model.
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This process entails pairing buyers and sellers to create notional financial links 
between them. The algorithm for this process requires some further explanation. 
In the first instance, buyers and sellers are divided into two lists. At each point in 
time, each buyer will look around each seller and see whether a condition for the 
exchange of a cds cash flow and the notional hypothetical exposure is met. This 
condition is:

[Eq. 3] (Exposureseller + Exposurebuyer)(cdf) < (Assetsbuyer)(tdf)

Where the tdf is a toxic discount factor which appears when firms become 
infected. For “toxic” or “infected” firms, the new state condition affects their cdf as 
they grow more pessimistic on cds market prices, but also affect their own valua-
tion of assets, as they are heavily discounted given that notional amounts payable 
to the firm quickly disappear, and in order for the firm to meet its notional exposure 
margins, it is forced to sell its assets. These events help provide a cascading con-
text of financial contagion amongst firms, whether they are or not holders of the 
underlying exposure.

Moreover, firms without exposure (firms-margin) enter into cds contracts 
by way of a “sensing” sub-program. In this sense, [Eq. 3] is modified to:

[Eq. 4] (Expo
_
  sureof nearby agents + Exposurebuyer)(cdf) < (Assetsbuyer)(tdf)

Where Expo
_
   sure is the mean exposure of agents at a distance of 10 patches 

from the caller. This peculiar introduction of “patches” merits some clarification. In 

Figure 7 
Spreads for the finsir v.2 Model

Source: finsir v.2 Model.
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the model, patches proxy for business “nearness”. Firms do not operate in a vacuum, 
these respond and act strategically depending on the environment in which they 
operate. Firms that bet on the exposure of other firms (firms-margin in the model) 
do so because they have some knowledge about the operations of companies which 
they deem to consider close to them, whether as competitors or not. The relation-
ship expressed above for firms-margin tries to capture this effect, and the ensuing 
cascading phenomena of firms which look to their nearest counter-parts for some 
guidance on their assessments and bets.

Internally, the agent will transact as long as its leverage ratio does not 
surpass 30%. If the agent has a higher ratio, the firm very likely will be unable to 
cope with creditor’s claims and disappear. Although this number might be exces-
sive by Basel standards (the standard for banks is 5%), financial firms that went 
bankrupt during the early days of the crisis had leverage ratios around that number. 
For example, in the infamous Lehman Brothers 2006 financial report issued by that 
company before the crisis, the firm nonchalantly recognized that between 2002 and 
2006 it had an official leverage position between 23 and 29%. However, it was later 
acknowledged that its off-books financial position was even more precarious.

The immune process to allow for recovery involved the introduction of 
a toxic-count variable, very similar to a process rehearsed in finsir v.1. Here, all 
infected agents start a toxic-count during their infection which increases by one 
unit at each time-step. As the toxic-count progresses, the possibility of recovering 
fades away, but apart from that it does not affect any other variables. This toxic 
count, as used in other SIR models, only seeks to internally keep a time-clock of 
the infection and proxy for ensuing difficulties in recovering after a protracted and 
stubborn infection.

Furthermore, this toxic-count provides a benchmark from which to as-
sess recovery. In order for firms to recover, a random recovery variable (named in 
the model recovery-possibility) is pitted against the toxic-count. If greater than the 
toxic-count, the firm recovers, and with it, some of the valuation of its assets, given 
the justification stated above. However, this valuation after recovery will not be as 
generous as the one before infection and will oscillate above the toxic discount fac-
tor but below the original valuation, given the uncertainty of economic conditions 
after the infection shock.

4. Initialization

For the initialization of finsir v.2, a fixed set of agents is created, localized and a 
set of state variables are randomized. Furthermore, a number of constants are set 
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for some of the global variables for convenience. The model as it stands creates 
50 financial firms, 25 of those will have an underlying exposure, and the rest will 
be firms that are betting on the underlying firm’s prospects, without having any 
exposure. Firms are randomly distributed on a given metric space. All firms will 
have a random number of assets between 0 and 10 000 units. Underlying exposure 
for those firms with the underlying securitywill be between 0 and a 1 000 units. As 
stated above, the cdf will be randomized for all firms between 0 and 2.

Initial parameters set are the initial spread as a random variable between 
0 and 0.10. The yield is fixed initially at 0.08, although it can also be randomized. 
The risk free is set at 0.025, and the transaction cost at 0.01. Finally, toxicity (or the 
transmission of the infection) via the links is set at 5 – here the controls are inverted, 
a low “toxicity” allows for higher transmission of infection. The recovery variable 
is set at 3: a low recovery variable makes recovery more difficult. Some run-time 
errors occur due to the random structure of buyers and sellers in lists, given their 
individual cdfs. In some occasions, the market is uneven and buyers and sellers are 
clustered in one of the two lists, so when the market-maker mechanism starts to 
review each agent individually, it will run into an empty set. If one of the lists is 
empty, the program will stop. To solve this problem, another setup initialization 
is required.

5. Design concepts and results

This short overview on the design concepts will focus on the objectives of firms 
and the interpretation of their interaction as presented in finsir v.2. The objectives 
of firms are based on rule-of-thumb procedures. In this model, although not strictly 
profit-optimizers, firms are seeking cash flows without taking into the consideration 
the notional links being created with their respective counter-parties. In this sense, 
bounded rationality prompts firms to act, as they are systematically making a crucial 
incorrect inference (Rubinstein 1998: 41): although the future is uncertain, and the 
possibilities of a system-wide financial implosion difficult to ascertain, they seek 
to increase their notional exposure as to increase cash flow receivables.

A similar situation proved to be AIG’s undoing: deliberately looking to 
set cash flow premia without due consideration of risk-taking on the notional links 
created, amidst a crisis which spread rapidly and affected the valuations of assets 
of the rest of the firms, will cause all involved to fall like one by one, like a house of 
cards.

This leads, inasmuch it comes to interpreting the interaction mechanisms 
in the model, to two distinct results, which seem to be in agreement with the robust-
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yet-fragile explanations offered by Haldane above. Below an unidentified threshold 
of interactions, the activation of a toxic shock in the system and the ensuing elimi-
nation of weaker firms appears to lock and consolidate firms (as shown below in 
Figure 8) in a dynamic closely resembling the one in finsir v.1, Figure 3. In this 
case, after determining a set of parameters in the model (namely, the initial spread 
of the cds, the bond yields accrued to agents, the transaction costs implicit in the 
system, the level of toxicity of infection and the possibility of recovery), the model 
run tends to a sort of dynamic stationary state, very similar to that of some runs in 
finsir v.1. Financial links cluster around a group of very large firms, with enough 
assets to allow them to maintain their eagerness to buy, willing and able to withstand 
the system exposure on their balance sheets. Even more so, these companies allow 
some toxic companies to continue transactions, in a sort of zombie-like state.

However, it seems that beyond an unidentified threshold (that cascade 
portal as identified by Haldane and others above), the system assumes an apocalyptic 
configuration, and only a few firms remain after a violent system adjustment, as 
seen in Figure 9 below.

Figure 8 
Oscillating dynamics for finsir v2 where links cluster around large firms, 

eager to buy

Source: FINSIR v.2
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Figure 9 
“Apocalyptic” scenario for finsir v.2. Most firms disappear

Source: FINSIR v.2

Even when the causes for these two dynamics are not clear from financial 
theory, these mirror insights from sir epidemiological models. We could argue 
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within the dynamic equilibrium of the system, one which assumes a clustering 
pattern around the biggest surviving firms. This scenario would occur during a 
not-so violent downturn, when infected firms are allowed to continue operations. 
Without a doubt this will increase the fragility of the system, if another financial 
crisis ensues. The second, “apocalyptic” scenario occurs when the downturn is 
violent and adjustment is unforgiving for all firms. Only large firms will survive, 
and toxic firms will disappear.

6. Limitations of finsir v.2

There are many problems in trying to apply the sir Model to financial networks. 
Financial systems fail to exhibit the same morphology and do not share similar 
generative processes as biological systems. This limitations were evident during 
the design of finsir v.1 and v.2.
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With regards to morphology and structure, contact amongst firms in fi-
nancial networks is defined with respect to cash flows. These provide the topology 
from which financial contagion might spread given the intoxication of a firm and 
its notional asset flows with respect to counter-parties, with little or no regard to 
symptoms. In the financial world, it is easier to continue rolling over swap positions 
and posturing a healthy appearance to counter-parties than in biological systems, 
where contact dynamics, as an increasing function of population, are affected by 
symptoms (with hiv/aids being the notable exception). Financial systems tend to 
be more subtle.

Furthermore, generative processes involving financial firms exhibit di-
fferent dynamics than biological systems. For instance, whereas biological entities 
would be able to reproduce given favorable circumstances of food and climate, 
financial firms face a different set of constraints, which are not set by their economic 
capacity but by their relative political bargaining power.

Biology tends not to favor too-big-to-fail entities. In an ecosystem, resource 
monopolies exert a taxing influence on its surroundings and the potential feedback 
effects, more often than not, are deemed too costly for the survival of the species. 
For example, this reality is hard wired into scale laws for thermodynamic allometry 
and concretely, into Kleiber’s law. In financial systems, the political economy of 
finance allows for loopholes where the size-metabolism constraint is weakened 
given the relative political bargaining power of financial firms.

For this reason, it is hard to link fitness and reproduction with a successful 
set of financial networks, given the exogenous nature of the creation of financial 
firms. Instead of spawning competitors during times of prosperity, financial firms 
seem to consolidate through mergers and acquisitions (M&A). Even more puzzling, 
M&A in the financial sector, even during times of prosperity, seems not be driven 
by increasing profits, performance or stockholder wealth (Piloff & Santomero 1996: 
18). Without a doubt, financial firms require a propitious economic context for suc-
cess; however the sufficient condition for ultimate victory seems to be the relative 
lobbying might against anti-trust regulations. Division of labor and specialization 
in financial firms seems to be a more oddity than an incentive for reproduction.

Finally, applying the SIR model to the death of a firm is faced with some 
problems of its own. Illiquidity in financial firms is a necessary but not sufficient 
condition for the death of a firm, since the entity might keep illiquid assets and 
claims that may help it weather bad times, as long as it keeps creditors at bay. And 
as proven by the recent financial debacle, the determination of insolvency can be 
a political issue. Brittle accounting rules are no match to organized lobbies, and 
indeed much of the literature in accounting journals revolves around the discus-
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sion of lobbying models for accounting standards (for a short literature review, see 
Königsgruber 2010).

7. Conclusion

This paper sought to explain the most important aspects of the finsir v.2 model 
and to highlight its operating mechanism as an approximation to model financial 
contagion. Using the example of the cds derivative market, the model builds upon a 
network topology of financial firms involved, whether as holders of exposure of an 
individual firm or as bettors on the prospective of default of that firm. Later, it seeks 
to incorporate some insights of the SIR epidemiological model to help visualize the 
spread of financial crises in that market.

The model provides an interesting first approximation to the dynamics of 
real derivative markets. Spreads are computed by a process which seeks to mimic, 
albeit incompletely, their observed progression over medium-term life spans (1 to 
2 years). Furthermore, agents react to a combination of expectations, bullish / bea-
rishness and comparative advantages when going into the market for cds. These 
rules provide an abridged context for financial link creation. However, whereas other 
works focus on the creation of these links and their robust-yet-fragile topology, this 
model only seeks to apply a modified version of the SIR model to allow for financial 
contagion amidst processes of link creation.

In this sense, infected firms pass on their toxicity to other firms via notio-
nal cash flows which prove to be fictitious in nature, and in doing so, disrupt firm’s 
expectations and the normal valuation of assets in their quasi-balance sheets. The 
model suffers from some limitations, especially when trying to model the generative 
processes, death and morphology of financial firms. Unlike biological systems, finan-
cial systems are more subtle and as we have seen in the latest economic downturn, 
politically driven. For this reason, in order to fully grasp their complexity, another 
layer of rules and assumptions needs to be wired into the sir model.

8. References

Allen, Franklin & Gale, Douglas (2002) Asset Price Bubbles and Stock Market 
Inter-linkages. Center for Financial Institutions. Working Papers, Wharton School 
Center for Financial Institutions, University of Pennsylvania, (http://fic.wharton.
upenn.edu/fic/papers/02/0222.pdf).

Bodie, Zvi; Kane, Alex & Marcus, Alan (2005) Investments. McGraw-Hill, 6th 
Edition.



 128  Fischer

Coval, Joshua; Jurek, Jacob & Stafford, Erik (2008) The Economics of Structured 
Finance. Harvard Business School Working Paper, (http://www.hbs.edu/research/
pdf/09-060.pdf).

Gai, Prasanna & Kapadia, Sujit (2010) Contagion in financial networks. Working 
Paper Series, Bank of England. (http://www.bankofengland.co.uk/publications/
workingpapers/wp383.pdf).

Haldane, Andrew (2009) Rethinking the Financial Network. Speech delivered at the 
Financial Students Association, Amsterdam. (http://www.bankofengland.co.uk/
publications/speeches/2009/speech386.pdf).

Hull, John (2002) Introducción a los Mercados de Futuros y Acciones.McGraw-
Hill.

Königsgruber, Roland (2010),“A Political Economy of Accounting Standard Setting”. 
Journal of Management and Governance, Volume 14, Number 4, 277-295

Markose, Sheri; Giansante, Simone; Gatkowski, Mateusz & Shaghagui, Ali Rais 
(2010) “Too Interconnected To Fail: Financial Contagion and Systemic Risk”, In 
Network Model of cds and Other Credit Enhancement Obligations of US Banks. 
University of Essex, Department of Economics Discussion Paper Series, (http://
www.essex.ac.uk/economics/discussion-papers/Papers-text/dp683.pdf).

Piloff, Steven & Santomero Anthony (1996) The Value Effects of Bank Mergers and 
Acquisitions. Center for Financial Institutions Working Papers, Wharton School 
Center for Financial Institutions, University of Pennsylvania, (http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.40.6206&rep=rep1&type=pdf).

Rubinstein, Ariel (1998) Modelling Bounded Rationality. mit Press.


