Simulación Cobb-Douglas: Estados Unidos y México

Autores/as

  • Carolina Carbajal-De-Nova Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2024v39n101/Carbajal

Palabras clave:

Productividad total de los factores , Cobb-Douglas, Simulación , México, Estados Unidos

Resumen

El presente trabajo busca simular la productividad total de los factores siguiendo el proceso originalmente propuesto por Cobb y Douglas (1928). Se llevan a cabo estimaciones con frecuencia anual para Estados Unidos durante dos periodos, es decir, 1899-1992 y 1993-2019. En el caso de México, las estimaciones se efectúan para el periodo 1993-2015. Se encuentra que la distribución del ingreso ha sido favorable al capital durante las décadas recientes, tanto para Estados Unidos como para México. La participación del capital ha crecido en los Estados Unidos de un 25% en 1899-1922 a 89% en 1993-2015, mientras que en México ha sido de 82% durante 1993-2015. La distribución funcional del ingreso requiere un estrecho seguimiento.


Clasificación JEL: E21, E22, E23, E24, E25, E27.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Carolina Carbajal-De-Nova, Universidad Autónoma Metropolitana-Iztapalapa

    Profesora-investigadora Titular C, de la Universidad Autónoma Metropolitana, Unidad Iztapalapa, Departamento de Economía.

Referencias

Barro, R.J. (1991a). Economic Growth in a Cross Section of Countries. The Quarterly Journal of Economics, 106(2), 407-443. https://doi.org/10.2307/2937943

Barro, Robert J., and Sala-i-Martin, X. (2004). Economic Growth. Cambridge: The MIT Press.

Barro, R.J., Sala-i-Martin, X., Blanchard, O.J., and Hall, R.E. (1991b). Convergence Across States and Regions. Brookings Papers on Economic Activity, 1, 107-182. https://doi.org/10.2307/2534639

Berndt, E.R., and Christensen, L.R. (1973). The Internal Structure of Functional Relationships: Separability, Substitution and Aggregation. The Review of Economic Studies, 40(3), 403-410. https://doi.org/10.2307/2296459

Biddle, J. (2012). Retrospectives: The Introduction of the Cobb-Douglas Regression. Journal of Economic Perspectives, 26(2), 223-236. http://dx.doi.org/10.1257/jep.26.2.223

Bureau of Economic Analysis. (without date). Retrieving date January 30, 2023.

Campodónico, H. (2001). Consecuencias del “Shock” Petrolero en el Mercado Internacional a Fines de los Noventa. Proyecto CEPAL/Comisión Europea Promoción del uso Eficiente de la Energía en América Latina. Santiago de Chile: Organización de Naciones Unidas, UN. CEPAL-Comisión Europea-UN. CEPAL. División de Resursos Naturales e Infraestructura. Available at: https://www.cepal.org/es/publicaciones/6379-consecuencias-shock-petrolero-mercado-internacional-fines-noventa

Cobb, C.W., and Douglas, P.H. (1928). A Theory of Production. American Economic Review, 18(1 Supplement), 139–165. Available at: https://www.jstor.org/stable/1811556

Deng, H.M., Wang, C., Cai, W.J., Liu, Y., and Zhang L.X. (2020). Managing the Water-Energy-Good Nexus in China by Adjusting Critical Final Demands and Supply Chains: An Input-Output Analysis. Science of the Total Environment, 720, 137635. https://doi.org/10.1016/j.scitotenv.2020.137635

Fagerberg, J. (2000). Technological Progress, Structural Change and Productivity Growth: a Comparative Study. Structural Change and Economic Dynamics, 11(4), 393-411. https://doi.org/10.1016/S0954-349X(00)00025-4

Felipe, J., and McCombie, J. (2020). The Illusions of Calculating Total Factor Productivity and Testing Growth Models: from Cobb-Douglas to Solow and Romer. Journal of Post Keynesian Economics, 43(3), 470-513. https://doi.org/10.1080/01603477.2020.1774393

Felipe, J., and McCombie, J. (2010). What is Wrong with Aggregate Production Functions. On Temple’s Aggregate Production Functions and Growth Economics. International Review of Applied Economics, 24(6), 665–684. https://doi.org/10.1080/02692171.2010.512146

Felipe, J., and McCombie, J. (2012). Aggregate Production Functions and the Accounting Identity Critique: Further Reflections on Temple’s Criticisms and Misunderstandings. SSRN Electronic Journal, Levy Economics Institute, Working Papers No. 718. http://dx.doi.org/10.2139/ssrn.2055788

Felipe, J., and Adams, F.G. (2005). ‘A Theory of Production.’ The Estimation of the Cobb-Douglas Function: A Retrospective View. Eastern Economic Journal, 31(3), 427–445. Available at: https://www.jstor.org/stable/40326423

Francis, D.C, Karalashvili, N., Maemir, H. and Meza, J.R. (2020). Measuring Total Factor Productivity Using the Enterprise Surveys. A Methodological Note. Policy Research World Bank Working Paper 9491. Available at: http://www.worldbank.org/prwp

Hicks, J.R. (1932). The Theory of Wages. Londres: Macmillan.

INEGI. (2013). Sistema de Cuentas Nacionales de México Fuentes y Metodologías Año Base 2013 Matriz De Insumo-Producto, Ciudad de México: México.

Kmenta, J. (1967). On Estimation of the CES Production Function. International Economic Review, 8(2), 180-189. https://doi.org/10.2307/2525600

Keynes, J.M. (1936). The General Theory of Employment, Interest, and Money. Londres: Macmillan.

Kydland, F.E., and Prescott, E.C. (1982). Time to Build and Aggregate Fluctuations. Econometrica, 50(6), 1345-1370. https://doi.org/10.2307/1913386

Leontief, W.W. (1936). Quantitative Input and Output Relations in the Economic Systems of the United States. The Review of Economics and Statistics, 18(3), 105-125. https://doi.org/10.2307/1927837

Leontief, W.W. (1937). Interrelation of Prices, Output, Savings, and Investment. The Review of Economics and Statistics, 19(3), 109-132. https://doi.org/10.2307/1927343

Leontief, W.W. (1967). An Alternative to Aggregation in Input-Output Analysis and National Accounts. The Review of Economics and Statistics, 49(3), 412-419. https://doi.org/10.2307/1926651

Leontief, W.W. (1970). Environmental Repercussions and the Economic Structure: An Input-Output Approach. The Review of Economics and Statistics, 52(3), 262-271. https://doi.org/10.2307/1926294

Liu, X., and Shi, J. (2020). A New Method for Interindustry Linkage Analysis Based on Demand-Driven and Multisector Input-Output Model and its Application in China’s Manufacturing and Producer Services. Complexity in Economics and Business. 3857981, 1-16. https://doi.org/10.1155/2020/3857981

Mallick, D. (2012). The Role of the Elasticity of Substitution in Economic Growth: A Cross-Country Investigation. Labour Economics, 19(5), 682-694. https://doi.org/10.1016/j.labeco.2012.04.003

Ohlin, B. (1967). Interregional and International Trade. Cambridge, Massachusetts: Harvard University Press.

Pang, W., Xie, T., Wang, Z., and Ma, L. (2022). Digital Economy: An Innovation Driver for Total Factor Productivity. Journal of Business Research, 139, 303-311. https://doi.org/10.1016/j.jbusres.2021.09.061

Pesaran, M.H., and Pesaran, B. (1997). Working with Microfit 4.0: Interactive Econometric Analysis. Oxford: Oxford University Press.

Phelps-Brown, E.H. (1957). The Meaning of the Fitted Cobb-Douglas Function. The Quarterly Journal of Economics, 71(4), 546–560. https://doi.org/10.2307/1885710

Piketty, T. (2014). Capital in the Twenty-First Century. Boston: The Belknap Press of Harvard University Press.

Piketty, T. (2021). Global Income Inequality, 1820-2020: the Persistence and Mutation of Extreme Inequality. Journal of the European Economic Association, 19(6), 3025-3062. https://doi.org/10.1093/jeea/jvab047

Qiu, Y., Han, W., and Zeng, D. (2023). Impact of Biased Technological Progress on the Total Factor Productivity of China’s Manufacturing Industry: the Driver of Sustainable Economic Growth. Journal of Cleaner Production, 409, 137269. https://doi.org/10.1016/j.jclepro.2023.137269

Samuelson, P. (1979). Paul Douglas’s Measurement of Production Functions and Marginal Productivities. Journal of Political Economy, 87(5), 923-939. Available at: https://www.jstor.org/stable/1833076

Sandelin, B. (1976). On the Origin of the Cobb-Douglas Production Function. Economy and History, 19(2), 117-123. https://doi.org/10.1080/00708852.1976.10418933

Skevas, I. (2022). A Novel Modelling Framework for Quantifying Spatial Spillovers on Total Factor Productivity Growth and its Components. American Journal of Agricultural Economics, 105(4), 1221-1247. https://doi.org/10.1111/ajae.12360

Solow, R.M. (1956). A Contribution to the Theory of Economic Growth. Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513

Solow, R.M. (1957). Technical Change and the Aggregate Production Function. The Review of Economics and Statistics, 39(3), 312-320. https://doi.org/10.2307/1926047

Velupillai, K. (1973). The Cobb-Douglas or the Wicksell Function? -A comment. Economy and History, 16(1), 111-113. https://doi.org/10.1080/00708852.1973.10418905

Wang, Q., and Ge, S. (2020). Uncovering the Effects of External Demand on China’s Coal Consumption: A Global Input–Output Analysis. Journal of Cleaner Production, 245, 118877, 1-18. https://doi.org/10.1016/j.jclepro.2019.118877

Wicksell, K. (1916). Den ‘Kritiska Punkten’ i Lagen för Jordbrukets Aftagande Produktivitet. Ekonomisk Tidskrift (The Scandinavian Journal of Economics), 18(10), 285-292. Available at: https://www.jstor.org/stable/i280092

Xu, B., Sendra-García, J., Gao, Y., and Chen, X. (2020). Driving Total Factor Productivity: Capital and Labor with Tax Allocation. Technological Forecasting and Social Change, 150, 119782, 1-10. https://doi.org/10.1016/j.techfore.2019.119782

Zellner, A., J. Kmenta & Drèze, J. (1966). Specification and Estimation of Cobb-Douglas Production Function Models. Econometrica, 34(4), 784-795. https://doi.org/10.2307/1910099

Descargas

Publicado

2024-05-06

Número

Sección

Artículos

Cómo citar

Simulación Cobb-Douglas: Estados Unidos y México. (2024). Análisis Económico, 39(101), 99-119. https://doi.org/10.24275/uam/azc/dcsh/ae/2024v39n101/Carbajal

Artículos similares

1-10 de 537

También puede Iniciar una búsqueda de similitud avanzada para este artículo.