Stochastic Processes. A Critical Synthesis

Autores/as

  • Jorge Ludlow Wiechers Universidad Autónoma Metropolitana-Azcapotzalco
  • Felicity Williams Universidad Autónoma Metropolitana-Azcapotzalco
  • Beatríz Mota Aragón Universidad Autónoma Metropolitana-Iztapalapa
  • Felipe Peredo y Rodríguez Universidad Autónoma Metropolitana-Iztapalapa

Palabras clave:

Wiener processes, diffusion processes, Ito formule, Ornstein-Uhlenbeck, Merton, Vasicek, Cox Ingersoll and Ross, Ho-Lee, Longstaff, Hull-White

Resumen

The subject of Stochastic Processes is highly specialized and here only we present an assessment of the subject. To explain uncertainty dynamics a model is required which consists of a system et stochastic differential equation. We provide a critical synthesis of the literature and analyze the geometric behavior of a basket of useful models, stopping at computer simulation and borrowing ideas taken from the Monte Carlo method.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Black, F. and M. Scholes (1973). “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, 81(3), pp. 637-654.

Cox, John, Jonathan Ingersoll and Stephen Ross (1985). “An Intertemporal General Equilibrium Model of Asset Prices”, Econometrica, 53, pp. 363-384.

Dohan, U. (1978). “On the Term Structure of Interest Rates”, Journal of Financial Economics, 6, pp. 59-69.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Springer.

Gourieroux and Jasiak (2001). Financial Econometrics:Diffusion Process, Princeton series in Finance.

Hamilton, James (1995). Time Series Analysis, Princeton University Press.

Ho, T. and S. Lee (1986). Term Structure Movements and Pricing Interest Rate Contingent Claims, Journal of Finance, 42 (5), pp. 1011-1029.

Hull, J. (1993). Options, futures and other derivative securities 2nd, USA: Prentice Hall.

__________ (2002). Options, Futures, and Other Derivatives, 5nd, USA: Prentice Hall.

Ito, Kiyoshi (1951). “On Stochastic Differential Equations”, Memoirs, American Mathematical Society, 4, pp. 1-51.

Karatzas I., S. E. Shreve (1991 ) Brownian Motion and Stochastic Calculus, GTM, 113, Springer.

Longstaff, F. and E. Schwartz (1979). “Interest Rate Volatility and the Term Structure: A Two-factor general equilibrium model”, Journal of Finance, 47, pp. 1259- 1282.

Lutkepohl, Helmut (2005). New Introduction to Multiple Time Series Analysis, Springer Verlag.

Merton, R. C. (1970). “Optimum Consumption and Portfolio Rules in a Continuous- Time Model”, Working Papers, 58, Massachusetts Institute of Technology, Departments of Economics.

__________ (1980). “On Estimating the Expected Return on the Market: An Exploratory Investigation”, Journal of Financial Economics, 8(4), pp. 323-361.

Mota Aragón, Martha Beatriz (2006). “El Análisis de los Flujos de Efectivo como una Aplicación de la Teoría de los Procesos Estocásticos y la Teoría de Opciones Reales, un nuevo enfoque”, ITESM, 4 de diciembre.

Neftci, Salih N. (2000). An Introduction to the Mathematics of Financial Derivatives, New York: Academic Press.

Oksendal Bernt(1995). Stochastic Differential Equations, Springer Verlag.

Tsay Rue (2002). Analysis of Financial Time Series, Wiley.

Vasicek, O. (1977). “An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics, 5, pp. 177-188.

Venegas, F. (2006). Riesgos Financieros y Económicos: Productos Derivados y Decisiones Económicas bajo incertidumbre, Thomson.

Descargas

Publicado

2024-07-23

Cómo citar

Ludlow Wiechers, J., Williams, F., Mota Aragón, B., & Peredo y Rodríguez, F. (2024). Stochastic Processes. A Critical Synthesis. Análisis Económico, 23(53), 73–97. Recuperado a partir de https://analisiseconomico.azc.uam.mx/index.php/rae/article/view/1322

Número

Sección

Artículos

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.