Globalización y desigualdad: un enfoque multidimensional a través de redes neuronales artificiales (Globalization and inequality: A mltidimensional approach through artificial naural networks)

Autores/as

  • Ana Cecilia Parada Rojas Instituto Politécnico Nacional-Escuela Superior de Economía
  • Humberto Ríos Bolívar Instituto Politécnico Nacional-Escuela Superior de Economía

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2018v33n82/Parada

Palabras clave:

Desigualdad, Gobalización, Redes Neuronales Artificiales, Income inequality, Globalization, Artificial Neural Network.

Resumen

La globalización es un fenómeno multidimensional que incluye factores comerciales, financieros, tecnológicos y macroeconómicos, los cuales tienen distintos efectos sobre la desigualdad en el ingreso entre los hogares dentro un país. En este trabajo se aborda la interacción entre dichas variables para identificar los principales factores de cada dimensión
y la dirección de su efecto a través del Análisis de Sensibilidad de Redes Neuronales Artificiales (RNA). Esta herramienta de minería de datos permite captar relaciones no lineales desde un enfoque no paramétrico. Entre los factores que destacan en la reducción de la desigualdad están el crédito y gasto en investigación y desarrollo, el control de la corrupción y el crecimiento demográfico, una posición acreedora en la cuenta financiera y la globalización comercial.

Clasificación JEL: C45, D33, F01.

 

Abstract


Globalization is a multidimensional phenomenon that includes the commercial, financial, technological and macroeconomic factors, which have different effects on household income inequality within countries. This paper studies the interrelation between this variables to identify the main factors of each dimension and the direction of its effect through the Sensitivity Analysis of Artificial Neural Networks. This data mining tool finds out non-linear relationships with a non-parametric approach. The main factors that reduce inequality includes credit and spending on research and development, control of corruption and population growth, a credible position in the financial account and trade globalization.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ana Cecilia Parada Rojas, Instituto Politécnico Nacional-Escuela Superior de Economía

Escuela Superior de Economía del Instituto Politécnico Nacional.

Humberto Ríos Bolívar, Instituto Politécnico Nacional-Escuela Superior de Economía

Profesor Investigador de la Escuela Superior de Economía del Instituto Politécnico Nacional

Citas

Angeles-Castro, G. (2007). “Factors driving changes in income distribution in post-reform Mexico”, Department of Economics Discussion Paper, University of Kent.

Arango, F., Llanos, A., y López, F. (2013). “Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales”, Contaduría y Administración, vol. 58 núm. 3, pp. 203-225.

Asteriou, D., Dimelis, S., & Moudatsou, A. (2014). Globalization and income inequality:A panel data econometric approach for the EU27 countries”, Economic Modelling, vol. 36 no.7, pp. 592-599.

Azzimonti, M., De Francisco, E., & Quadrini, V. (2014). “Financial globalization, inequality, and the rising public debt”, The American Economic Review, vol. 104, no. 8.

Balan, F., Torun, M., & Kilic, C. (2015). “Globalization and Income Inequality in G7: A Bootstrap Panel Granger Causality Analysis”, International Journal of Economics and Finance, vol. 7, no. 10, p. 192.

Cornia, A. G. (2004). Inequality, growth, and poverty in an era of liberalization and globalization. Oxford University Press for UNU-WIDE.

Chauvin, Y., & Rumelhart, D. E. (1995). Backpropagation: theory, architectures, and applications. Psychology Press, New Jersey.

Chinn, M. and H. Ito (2006), “What matters for financial development? Capital controls, institutions and interactions”, Journal of Development Economics, vol.81, no. 1, pp. 163-192.

Deaton, A. (2013). The great escape: health, wealth, and the origins of inequality. Princeton University Press.

De Oña, J., & Garrido, C. (2014). “Extracting the contribution of independent variables in neural network models: a new approach to handle instability”, Neural Computing and Applications, vol. 25 no. 3, pp. 859-869.

Dreher, A., & Gaston, N. (2008). “Has globalization increased inequality?”, Review of International Economics, vol. 16, no. 3, pp. 516-536.

FitzGerald E. V. K. (1996) “The new trade regime, macroeconomic behavior and income distribution in Latin America”, in Bulmer-Thomas, Victor (ed.), The new

economic model in Latin America and its impact on income distribution and poverty. Palgrave Macmillan, UK

Garson, G.D. (1991). “Interpreting neural network connection weights”, Artificial Intelligence Expert, vol. 6, no. 4, pp. 46–51.

Haykin, S. (1994). Neural Networks, A comprehensive foundation. Pearson Prentice Hall, Upper Saddle River, New Jersey.

International Monetary Fund (2007). “Chapter 4: Globalization and Inequality”, World Economic Outlook, Washington DC. 31–65.

Jaumotte, F., Lall, S., & Papageorgiou, C. (2013). “Rising income inequality: technology, or trade and financial globalization?” IMF Economic Review, vol. 61 no. 2, pp. 271-309.

Kaufmann, D., Kraay, A., & Mastruzzi, M. (2009). “Governance matters VIII:aggregate and individual governance indicators, 1996-2008”, Policy Research Working Paper 4978, The World Bank, Washington, D.C.

Kuznets, S. (1955). “Economic growth and income inequality”, The American Economic Review, vol. 45, no. 1, pp. 1-28.

McNelis, P. D. (2005). Neural networks in finance: gaining predictive edge in the market. Elsevier Academic Press, Burlington, MA.

Milanovic, B. (2016). Global inequality A New Approach for the Age of Globalization. Harvard University Press, Cambridge, MA.

Nissanke, M., & Thorbecke, E. (2006). “Channels and policy debate in the globalization–inequality–poverty nexus”, World development, vol. 34, no. 8, pp. 1338-1360.

Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer Science & Business Media, Berlin.

Palmer, A., Montaño, J. J., & Sesé, A. (2006). “Designing an artificial neural network for forecasting tourism time series”, Tourism Management, vol. 27, no. 5, pp. 781-790.

Sen, A. (1995). Inequality Reexamined. Harvard University Press, Cambridge, MA.

Solt, F. (2016). “The Standardized World Income Inequality Database”, Social Science Quarterly 97 (5), pp.1267-1281.

Tinbergen, J. (1975). Income Differences: Recent Research. North Holland Pub. Co., Amsterdam.

Descargas

Publicado

2018-04-05

Cómo citar

Parada Rojas, A. C., & Ríos Bolívar, H. (2018). Globalización y desigualdad: un enfoque multidimensional a través de redes neuronales artificiales (Globalization and inequality: A mltidimensional approach through artificial naural networks). Análisis Económico, 33(82), 31–58. https://doi.org/10.24275/uam/azc/dcsh/ae/2018v33n82/Parada

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.