Dynamic convergence of time series and its inconsistency with stationarity in economic analysis

Authors

  • Xuedong Liu Sun Facultad de Estudios Superiores Aragón, Universidad Nacional Autónoma de México
  • José Gerardo Covarrubias López Facultad de Estudios Superiores Aragón-Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2022v38n97/Liu

Keywords:

Time series, Dynamic convergence, Stationarity, Unit Root

Abstract

The objective of this paper is to analyze the consistency between stationarity and dynamic convergence of time series, since in economic science both issues are often addressed independently, particularly from the methodological point of view, they are studied in a mutually exclusive manner. However, these two approaches are widely related, and their study has the common purpose of making forecasts and projections in any economic variable. For this reason, given the inappropriate specification of a model or the possible presence of spuriousness, the theoretical correspondence between these two properties could be incongruous in practice, especially for autoregressive modeling due to the assumption of ergodicity; in this way, the forecasts made based on this type of models could be erroneous within the economic analysis.
However, this type of analysis has not been carried out to date with clearness and deepness, which would mean a new line of research in the empirical analysis of stationarity and dynamic convergence in the economy, and in this specific case, the variables that make up international trade and the exchange rate adjustments in Mexico are involved
Keywords: Time series; Dynamic convergence; Stationarity; Unit Root.
JEL Classification: C10; C32; C53; F00.

Downloads

Download data is not yet available.

Author Biographies

  • Xuedong Liu Sun, Facultad de Estudios Superiores Aragón, Universidad Nacional Autónoma de México

    Profesor de Carrera Titular “C”, adscrito a la Facultad de Estudios Superiores, Aragón, Universidad Nacional Autónoma de México. 

  • José Gerardo Covarrubias López, Facultad de Estudios Superiores Aragón-Universidad Nacional Autónoma de México

    Investigador en estancia posdoctoral en la Facultad de Estudios Superiores, Aragón, Universidad Nacional Autónoma de México. 

References

Asteriou, D. & Hall, S. (2007). Applied Econometrics. A Modern Approach, NY, United States: Palgrave McMillan.

Billinsgley, P. (1965). Ergodic Theory and Information. Wiley Series in Probability and Mathematical Statistics, United States: John Wiley & Sons.

Bollerslev, T. (1986) Generalized Autorregressive Conditional Heteroskedasticity. Journal of Econometrics, Vol. 31, pp.307-327. https://doi.org/10.1016/0304-4076(86)90063-1

Box, G. E. & Jenkins, G. (1976), Time Series Analysis: Forecasting and Control, San Francisco: Holden Day, revised edition.

Brooks, C. (2008). Introductory Econometrics for Finance. Second Edition, United States: Cambridge University Press.

Chiang, A. & Wainwright, K. (2006). Fundamentos de Economía Matemática. Cuarta Edición, México: McGrawHill.

Dickey, D. A. & Fuller, W. A. (1979). Distribution of Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Asociation, Vol.74, no. 366, pp. 366 427-431 https://doi.org/10.2307/2286348.

Enders, Walter (2015), Applied Econometrics Time Series United States: 4th edition Wiley.

Engle, R. (1982). Autorregressive Conditional Heteroskedasticity with Estimates of United Kingdom Inflation, Econometrica, Vol.50, no. 4, pp. 987-1008. https://doi.org/10.2307/1912773.

Engle, R. & Granger, C. W. J. (1987). Cointegration and error correction representation, estimation and testing, Econometrica, Vol. 55, no.2, pp. 251-276. https://doi.org/10.2307/1913236.

Granger, C.W. J. & Newbold, P. (1974). Spurious regressions in econometrics, Journal of econometrics, Vol. 2, pp. 111-120. https://doi.org/10.1016/0304-4076(74)90034-7.

Guerrero, C. (2011). Introducción a la Econometría Aplicada, México: Editorial Trillas.

Gujarati, D. N. y Porter, D. C. (2010). Econometría, México: Quinta Edición McGrawHill.

Gutiérrez, C. (1992). Introducción a la Teoría Ergódica. Pro Matemática. Vol.VI, nos 11-12.

Harvey, A. C. (1993). Time Series Model, 2nd Edition. Hemel Hemstead: Harvester Wheatsheaf.

Johansen, S. (1988). Statistical Analysis of Cointegration Vectors”, Journal of Economic Dynamics and Control, Vol. 12, pp.231–254. https://doi.org/10.1016/0165-1889(88)90041-3.

Johansen, S. (1991). The role of the constant term in cointegration analysis of non stationary variables. University of Copenhagen, Institute of Mathematical Statistics.

Juselius, K. (2006), The Cointegrated VAR Model. Methodology and Applications. Advanced Texts in Econometrics. Oxfrod: University Press.

Liu, X., & Covarrubias, G. (2021). Convergencia dinámica de los intercambios comerciales entre China y México, 1993-2019. Problemas Del Desarrollo. Revista Latinoamericana De Economía, Vol. 52 no.206, pp. 169-196 https://doi.org/10.22201/iiec.20078951e.2021.206.69779.

Maddala, G. S. (2001). Introduction to Econometrics. UK: Third Edition, Wiley.

Monsalve, A. & Harmath, P. (2015). Introducción al Análisis de Series de Tiempo con Aplicaciones a la Econometría y Finanzas. Venezuela: XXVIII Escuela Venezolana de Matemáticas EMALCA-Venezuela.

Pérez, C. (2007). Econometría Básica: Técnicas y Herramientas. Madrid: Prentice Hall.

Phillips, P. & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, Vol.75 no.2, pp.335–346. https://doi.org/10.2307/2336182.

Peterson, K. (1983). Ergodic Theory. United States: Cambridge University Press.

Priestley, M. (1981). Spectral Analysis and Time Series. London:Academic Press.

Spanos A. (1998) Statistical Foundations of Econometric Modelling USA: Cambridge University Press.

Szlenk, W. (1979). Introducción a la Teoría Ergódica. México: Publicaciones del Centro de Investigación y de Estudios Avanzados del I.P.N.

Walters, P. (1982). An Introduction to Ergodic Theory. Luxemburgo: Springer Verlag.

Winters, P. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, Vol.6, no. 3, pp. 324-342. https://doi.org/10.1287/mnsc.6.3.324.

Wooldridge, J. M. (2010). Introducción a la Econometría: Un enfoque moderno 4ª Edición. Michigan State Universitty.

Yule, G. (1926). Why do we Sometimes get Nonsense-Correlations between Time-Series? A Study in Sampling and the Nature of Time-Series. Journal of the Royal Statistical Society, Vol. 89, no. 1, pp. 1-63. https://doi.org/10.2307/2341482.

Downloads

Published

2023-01-20

Issue

Section

Artículos

How to Cite

Dynamic convergence of time series and its inconsistency with stationarity in economic analysis. (2023). Análisis Económico, 38(97), 5-26. https://doi.org/10.24275/uam/azc/dcsh/ae/2022v38n97/Liu

Similar Articles

1-10 of 112

You may also start an advanced similarity search for this article.