Decisiones óptimas de consumo y portafolio con opciones asiáticas de tipo americano en un modelo de equilibrio general dinámico estocástico
DOI:
https://doi.org/10.24275/uam/azc/dcsh/ae/2020v35n89/MartinezPPalabras clave:
Stochastic optimal control, portfolio choice, American-style Asian option pricing, stochastic interest rateResumen
This work developed a dynamic stochastic general equilibrium model about the consumption and investment decisions of a representative risk averse agent, for a small and closed economy, constrained to the market risk of the assets in the portfolio with a finite time horizon of stochastic length. It is assumed that the agent has access to three assets: a stock, whose interest rate is stochastic, an option subscribed on the stock and a risk-free bond. The prices of the assets are quoted in units of the consumer good, and there are no taxes and no transaction costs for the maintenance of the portfolio. The proposed problem is useful to characterize the premium of an American-style Asian put option with floating strike as the solution of a partial differential equation.
Descargas
Citas
Arregui A., G. y Vallejo-Alonso, B. (2001). Análisis de la valoración de las opciones asiáticas utilizadas por los fondos de inversión garantizados de renta variable, Investigaciones Europeas de Dirección y Economía de la Empresa, 7(1),57-70.
Ángeles-Castro, G. y Venegas-Martínez, F. (2010). Valuación de opciones sobre índices bursátiles y determinación de la estructura de plazos de la tasa de interés en un modelo de equilibrio general, Investigación Económica, LXIX(271), 43-80.
Björk, T. (2009). Arbitrage theory in continuous time. Third ed., Oxford: Finance Series.
Björk, T. (2004). Arbitrage theory in continuous time. Second Edition, Oxford University Press.
Björk, T., Myhrman, J. y Persson, M. (1987). Optimal consumption with stochastic prices in continuous time, Journal of Applied Probability, 24 (1), 35-47.
Black, F. y M. Scholes (1973). The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81(3), 637-654.
Brigo, D. y Mercurio, F. (2006). Interest rate models: Theory and practice: With smile, inflation, and credit (2nd ed.). New York: Springer.
Broadie M., Glasserman P. y Ha Z. (2000). Pricing American Options by Simulation Using a Stochastic Mesh with Optimized Weights. En: Uryasev S.P. (eds) Probabilistic Constrained Optimization. Nonconvex Optimization and Its Applications, vol. 49. Springer, Boston, MA.
Cox, J.C. y Ross, S.A. (1976). The Valuation of Options for Alternative Stochastic Processes, Journal of Financial Economics, 3(1-2), 145-166.
Cox, J.C., Ingersoll, J.E. y Ross, S.A. (1985a). An Intertemporal General Equilibrium Model of Asset Prices, Econometrica, 53(2), 363-384. doi: 10.2307/1911241
Cox, J.C., Ingersoll, J.E. y Ross, S.A. (1985b). A Theory of the Term Structure of Interest Rates, Econometrica, 53(2), 385-407. doi: 10.2307/1911242
Cruz-Aké, S. y Venegas-Martínez, F. (2010). Productos derivados sobre bienes de consumo,
EconoQuantum, 6 (1), 25-54, Zapopan, México.
Detemple, J. y Weidong, T. (2002). The Valuation of American Options for a Class of Diffusion Processes, Management Science, 48 (7), 917-937.
Fouque, J.P. y Chuan-Hsiang H. (2003). Pricing Asian options with stochastic volatility, Quantitative Finance, 3(5), 353-362. https://doi.org/10.1088/1469-7688/3/5/301
Gaudenzi, M. Lepellere, M.A. y Zanette, A. (2010). The singular points binomial method for pricing american path-dependent options, Journal of Computational Finance, 1(1). doi: 10.21314/JCF.2010.214
Geske, R. y Shastri, K. (1985). Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques, The Journal of Financial and Quantitative Analysis, 20 (1), 45-71. doi: 10.2307/2330677
Hakansson, N. (1970). Optimal Investment and Consumption Strategies under Risk for a Class of Utility Functions, Econometrica, 38 (5), 587-607. doi:10.2307/1912196
Hernández-Lerma, O. (1994). Lectures on Continuous-Time Markov Control Processes. Aportaciones Matemáticas, Sociedad Matemática Mexicana, 3.
Ho, T. y Lee, S. (1986). Term Structure Movements and Pricing Interest Rate Contingent Claims, The Journal of Finance, 41(5), 1011-1029.
Hull, J. y White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities, The Journal of Finance, 42 (2), 281-300.
Hull, J. y White, A. (1993a). One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities, The Journal of Financial and Quantitative Analysis, 28(2), 235-254.
Hull, J. y White, A. (1993b). Efficient procedures for valuing european and american path-dependent options, The Journal of Derivatives, 1 (1), 21–31.
Huyên, P. (2009). Continuous-time Stochastic Control and Optimization with Financial Applications. Springer-Verlag.
Jiang, G. J. y Sluis, P. J. (1999). Pricing stock options under stochastic volatility and interest rates with efficient method of moments estimation. Research Report 99B31, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
Jørgensen, P. L. y Hansen, A. T. (1998). Analytical Valuation of American-Style Asian Options, Management Sciences, 46 (8). doi: 10.1287/mnsc.46.8.1116.12027
Karatzas, I. and Shreve, S. (1988). Brownian Motion and Stochastic Calculus. Springer.
Keng-Hsin, L., Kehluh, W. y Ming-Feng, H. (2009). Pricing American Asian options with higher moments in the underlying distribution, Journal of Computational and Applied Mathematics, 223 (1), 304–313 doi: 10.1016/j.cam.2008.01.012
Kohn, R. (2003). Partial Differential Equations for Finance, notas de curso.
Kohn, R. (2011). Partial Differential Equations for Finance, notas de curso, sección 6.
Li, W. y Chen, S. (2016). Pricing and hedging of arithmetic Asian options via the Edgeworth series expansion approach, The Journal of Finance and Data Science, 2 (1), 1-25.
Martínez-Palacios, T., Martínez-Sánchez, J. F. y Venegas-Martínez, F. (2015). Consumption and portfolio decisions of a rational agent that has access to an American put option on an underlying asset with stochastic volatility, International Journal on Pure and Applied Mathematics, 102(4), 711-732. doi: 10.12732/ijpam.v102i4.10
Martínez-Palacios, T., Ortiz-Ramírez, A. y Martínez-Sánchez, J. F. (2017). Valuación de opciones asiáticas con precio de ejercicio flotante igual a la media aritmética: un enfoque de control óptimo estocástico, Revista Mexicana de Economía y Finanzas (Nueva Época), 12 (3), 389-404. doi:10.21919/remef.v12i4.240.
Martínez-Palacios, T. y Venegas-Martínez, F. (2014). Un modelo macroeconómico con agentes de vida finita y estocástica: cobertura de riesgo de mercado con derivados americanos, Economía: Teoría y Práctica, (41) semestre julio-diciembre de 2014, 71-106.
Merton, R. C. (1971). Optimum Consumption and Portfolio Rules in a Continuous-Time Model, Journal of Economic Theory, 3(4), 373-413. doi:10.1016/0022-0531(71)90038-X
Merton, R. C. 1990, 1992. Continuous-Time Finance. (rev. ed.). Oxford, U.K.: Basil Blackwell.
Merton, R. C. (1973). Theory of Rational Option Pricing, Bell Journal of Economics, 4 (1), 141-183.
Min-Ku Lee, Jeong-Hoon Kim, and Kyu-Hwan Jang, (2014). Pricing Arithmetic Asian Options under Hybrid Stochastic and Local Volatility, Journal of Applied Mathematics, 2014, Article ID 784386, 8 p. https://doi.org/10.1155/2014/784386.
Nielsen, J. A. y Sandmann, K. (1996). The pricing of Asian options under stochastic interest rates, Applied Mathematical Finance, 3(3), 209-236. doi: 10.1080/13504869600000011
Ocejo, A. (2018). Asian Option as a Fixed-Point, Journal of Fixed Point Theory and Applications, 20(2),1-15. doi: 10.1007/s1178
Ortiz-Ramírez, A. y Martínez-Palacios, T. (2016). Análisis comparativo de valuación de opciones europeas y asiáticas con subyacente promedio y tasa de interés estocástica mediante simulación Monte Carlo, Revista Contaduría y Administración, 61 (4), 629-648. doi:10.1016/j.cya.2016.06.002
Pascucci, A. (2007). Free boundary and optimal stopping problems for American Asian options, Finance and Stochastics, 12 (1), 21-41. doi: 10.1007/s00780-007-0051-7
Peng, B. y Peng, F. (2010). Pricing Arithmetic Asian Options under the CVE Process, Journal of Economics, Finance and Administrative Science, 15 (29), 7-13.
Peskir, G. y Uys, N. (2003). On Asian options of American type, Research report No. 436, Dept. Theoret. Statist. Aarhus, 19p.
Pirjol, D. y Zhu, L. (2018). Short Maturity Asian options for the CEV model, Probability in the Engineering and Informational Sciences, 1-33. doi:10.1017/S0269964818000165
Sethi, S. y Thompson, G. (2000). Optimal Control Theory. New York, Springer.
Shreve, S. (1997). Stochastic Calculus and Finance. Descargable en
http://www.stat.berkeley.edu/users/evans/shreve.pdf.
Shuguang, Z., Shuiyong, Y. y Lijun, W. (2006). Prices of Asian Options Under Stochastic Interest Rate, Applied Mathematics-A Journal of Chinese Universities Ser. B, 21(2):135-142. doi:10.1007/BF02791350
Sierra, G., J. (2007). Procesos Hurst y movimientos brownianos fraccionales en mercados fractales. Revista de administración finanzas y economía, 1(1), 1-21.
Turnovsky, S. J. y Smith, W.T. (2006). Equilibrium consumption and precautionary savings in a stochastically growing economy, Journal of Economic Dynamics and Control, 30(2), 243-278.
Vanmaele, M., Deelstra, G., Liinev, J., Dhaene, J. y Goovaerts, M. (2006). Bounds for the price of discrete arithmetic Asian options, Journal of Computational and Applied Mathematics, 185(1), 51-90. doi: 10.1016/j.cam.2005.01.027
Venegas-Martínez, F. (2004). Reforma fiscal incierta y sus efectos en las decisiones de consumo y portafolio: impacto en el bienestar económico, Problemas de desarrollo, Revista Latinoamericana de Economía, 35(136), 137-151.
Venegas-Martínez, F. (2005). Política fiscal, estabilización de precios y mercados incompletos. Estudios económicos, 20(1), 3-25.
Venegas-Martínez, F. (2006). Stochastic Temporary Stabilization: Undiversifiable Devaluation and Income Risks, Economic Modelling, 23(1), 157-173.
Venegas-Martínez, F. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre. Segunda edición, Cengage, México.
Venegas-Martínez, F. (2009). Un modelo estocástico de equilibrio general para valuar derivados y bonos, EconoQuantum, 6 (1), 111-120.
Venegas-Martínez F. y Ortiz-Arango F. (2010). Impacto de la política fiscal en un ambiente con inflación estocástica: un modelo de control óptimo, Morfismos, 14(1), 51-68.
Villeneuve, S. (2007). On Threshold Strategies and the Smooth-Fit Principle for Optimal Stopping Problems, Journal of Applied Probability, 44(1),181-198.
Wang, J. y Zhang, Y. (2018). Geometric Average Asian Option Pricing with Paying Dividend Yield under Non-Extensive Statistical Mechanics for Time-Varying Model. Entropy, 20 (11) doi:10.3390/e20110828
Wilmott, P., Howison, S. y Dewynne, J. (1995). The Mathematics of Financial Derivatives: A Student Introduction. New York, USA, Cambridge University Press.