Modeling inflation expectations in Mexico: a perspective through bayesian inference
Keywords:
Inflation expectations, Bayesian inference, Monetary policyAbstract
It is acknowledged that inflation expectations significantly influence economic decisions. In Mexico, economic stability has been affected by the widespread increase in prices, stemming from disruptions in global trade of commodities and energy. This work introduces an innovation by employing decision theory, incorporating inflation expectations from experts to forecast price trends in complex scenarios, which serves as the foundation for developing a Bayesian inference model. The results suggest that inflation may remain elevated due to external factors and distrust in monetary policy. Consequently, the importance of the subjective expectations of economic agents in the formulation of monetary policies is emphasized, with the aim of stabilizing the inflation rate and maintaining credibility in the current macroeconomic context.
JEL Classification: C11, C53, D84,E31, E37, E52
Downloads
References
Adolfson, M., Laséen, S., Lindé, J., & Villani, M. (2007). Bayesian estimation of an open economy DSGE model with incomplete pass-through. Journal of International Economics, 72(2), 481-511.
Akerlof, G., & Shiller, R. (2010). Animal spirits: How human psychology drives the economy, and why it matters for global capitalism. Princeton University Press.
Banxico. (2024). https://www.banxico.org.mx/publicaciones-y-prensa/encuestas-sobre-las-expectativas-de-los-especialis/encuestas-expectativas-del-se.html
Blanchard, O. (2017). The need for different classes of macroeconomic models. Real Time Economics. Peterson Institute for International Economics.
Bunge, M. (1999). The crisis of global capitalism. The Journal of Socio-Economics, 28(4), 533–536. https://doi.org/10.1016/S1053-5357(99)00043-8
Candia, O., Coibion, O., & Gorodnichenko, Y. (2020). Communication and the beliefs of economic agents navigating the decade ahead: Implications for monetary policy. Federal Reserve Bank of Kansas City, pp. 301–347. https://doi.org/10.3386/w27800
Coibion, O., Gorodnichenko, Y., & Kumar, S. (2018). How do firms form their expectations? New survey evidence. American Economic Review, 108(9), 2671–2713. https://doi.org/10.1257/aer.20151299
Creswell, J. W. (2013). Qualitative Inquiry and Research Design: Choosing Among Five Approaches (3rd ed.).Thousand Oaks, CA: SAGE Publications.
Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2004). Comparing Dynamic Equilibrium Models to Data: A Bayesian Approach. Journal of Econometrics.
Friedman, M. (1968). The role of monetary policy. American Economic Review, 58(1), 1-17. https://www.jstor.org/stable/1831652
Gilboa, I., & Samuelson, L. (2022). What were you thinking? Decision theory as coherence test. Theoretical Economics, 17(2), 507-519. https://doi.org/10.3982/TE4707
Gilboa, I., Schmeidler, D., & Samuelson, L. (2020). Theories and cases in decisions under uncertainty. Games and Economic Behavior, 123(C), 22-40. https://doi.org/10.1016/j.geb.2020.06.001
Greenwald, B. C., & Stiglitz, J. E. (1986). Externalities in economies with imperfect information and incomplete markets. The Quarterly Journal of Economics, 101(2), 229-264. https://doi.org/10.2307/1891114
Guest, G., Bunce, A., & Johnson, L. (2006). How Many Interviews Are Enough? An Experiment with Data Saturation and Variability. Field Methods, 18(1), pp. 59-82. doi:10.1177/1525822X05279903
Hens, T., & Riege, M. (2016). Financial economics: A concise introduction to classical and behavioral finance. Springer.
IEA. (2021). Energy prices. https://www.iea.org/data-and-statistics/data-product/energy-prices-documentation
IMF. (2022). Global Supply Chain Disruptions and Inflation During the COVID-19 Pandemic. International Monetary Fund.
INEGI. (2018). Índice Nacional de Precios al Consumidor: Base segunda quincena de julio 2018=100. Recuperado el 22 de junio, de https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825104177.pdf
INSEE. (2023). Inflation / taux d’inflation. Recuperado el 26 de marzo de 2024 de https://www.insee.fr/fr/metadonnees/definition/c1473
Kapetanios, G., Labhard, V., & Price, S. (2008). Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation. Journal of Business & Economic Statistics, 26(1), pp. 33–41. https://doi.org/10.1198/073500107000000232
Klein, G. A. (2017). Sources of power: How people make decisions. MIT Press.
Koop, G., & Potter, S. (2004). Forecasting in dynamic factor models using Bayesian model averaging. The Econometrics Journal, 7(2), 550-565. https://doi.org/10.1111/j.1368-423X.2004.00143.x
Landeta, J. (1999). El método Delphi, una técnica de previsión del futuro. Barcelona: Ariel S.A.
Lucas, R. E. (1972). Expectations and the Neutrality of Money. Journal of Economic Theory, 4(2), 103-124. https://doi.org/10.1016/0022-0531(72)90142-1
Lucas, R. J. (2003). Macroeconomic priorities. American Economic Review, 93(1), 1-14. https://doi.org/10.1257/000282803321455133
Matas, A. (2018). Diseño del formato de escalas tipo Likert: un estado de la cuestión. Revista Electrónica de Investigación Educativa, 20(1), 38-47. https://doi.org/10.24320/redie.2018.20.1.1347
Mason, M. (2010). Sample Size and Saturation in PhD Studies Using Qualitative Interviews. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 11(3). https://doi.org/10.17169/fqs-11.3.1428
Mohedano, F. O. (2008). El método Delphi, prospectiva en ciencias sociales a través del análisis de un caso práctico. Revista Escuela de Administración de Negocios, (64), 31-54. https://doi.org/10.21158/01208160.n64.2008.452
Muth, J. F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica, 29(3), 315-335. https://doi.org/10.2307/1909635
Sims, C. A. (2009). Inflation expectations, uncertainty and monetary policy. BIS Working Paper, No. 275. https://doi.org/10.2139/ssrn.1440243
Sims, C. A. (2002). The role of models and probabilities in the monetary policy process. Brookings Papers on Economic Activity, 2002(2), 1-40. https://www.brookings.edu/articles/the-role-of-modelsandprobabilities-in-the-monetary-policy-process/
Stiglitz, J. E. (2018). Where modern macroeconomics went wrong. Oxford Review of Economic Policy, 34(1-2), 70-106. https://doi.org/10.1093/oxrep/grx057
Vergara-Pérez, S. D., y Venegas-Martínez, F. (2022). Estimación bayesiana de un modelo dinámico estocástico nuevo keynesiano de equilibrio general con reglas de política fiscal y monetaria para México. https://mpra.ub.uni-muenchen.de/115458/
Woodford, M. (2005). Central bank communication and policy effectiveness. Proceedings - Economic Policy Symposium - Jackson Hole. Federal Reserve Bank of Kansas City, t issue Augus, 399-474.
World Economic Forum. (2022). State of Supply Chain Disruptions
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Luis Enrique García Pérez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
