Parachute strategy: hedging proposal for the Mexican stock market in the face the arrival of omicron
DOI:
https://doi.org/10.24275/uam/azc/dcsh/ae/2022v37n96/OlivaresKeywords:
COVID-19, investment, financial optionsAbstract
The objective of the research is to propose a better volatility hedging strategy with European financial options on the main index of the Mexican market (S&P BMV/IPC) that provides greater protection compared to traditional strategies in the face of the arrival of the omicron variant in Mexico. A short-term intertemporal analysis is performed considering monthly forecasts in the price of the S&P BMV/IPC through the SARIMAX econometric model for various traditional volatility strategies (straddle, strangle and butterfly) and for the proposed parachute strategy. The results show that the parachute strategy is empirically the best, and a viable alternative to face the future impacts caused by the omicron variant. As a limitation, commission costs are not considered in financial option contracts. The work is original because it glimpses the first discoveries of the o micron variant in the Mexican market. It is concluded that the parachute strategy is better compared to the traditional ones and provides greater protection against drastic changes in the future price of the S&P BMV/IPC.
JEL Classification: G17; G32; I18.
Downloads
References
Abunofal M., Poshiya, N., Qussous, R., & Weidlich, A. (2021). Comparative analysis of electricity market prices based on different forecasting methods, IEEE Madrid PowerTech, Conference Proceedings 9495034
Ángeles G. y Venegas F. (2010). Valuación de opciones sobre índices bursátiles y determinación de la estructura de plazos de la tasa de interés en un modelo de equilibrio general, Investigación económica, LXIX(271), 43-80.
Banaś J. & Utnik K. (2021). Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting, Forest Policy and Economics, 131(4), 1-7. https://doi.org/10.1016/j.forpol.2021.102564
Basmadjian R., Shaafieyoun, A., Julka, S. (2021). Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods, Energies, 14, 1-23. htpps:// doi.org/10.3390/en14217443
Black, F. & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The Journal of Political Economy, 81(3), 637-654. https://www.jstor.org/stable/1831029
Box, G., & Jenkins G. (1968). Some Recent Advances in Forecasting and Control. Journal of the Royal Statistical Society. 17(2), 91-109 https://doi.org/10.2307/2985674
Brusokas, J., Pedersen, T.B., Siknis, L., Zhang, D., Chen, K. (2021). HeatFlex: Machine learning based data-driven flexibility prediction for individual heat pumps, e-Energy, Proceedings of the 2021 12th ACM International Conference on Future Energy Systems, 160-170.
Capasso, T., Fornero, G., Fiandra, U., Raciti, I. M., Paudice, A., & Sorano, E. (2019). Priorities in patient safety: The role of clinical risk management. The Future of Risk Management, Volume I (197-217). Palgrave Macmillan, Cham. https://doi.org/ 10.1007/978-3-030-14548-4_9
Cox, J. (1975). Notes on Option Pricing I: Constant Elasticity of Variance Diffusions. Working Paper, Stanford University.
Cheng, Q., Argon, N.T., Evans, C. S., Platss-Mills, T.F. & Ziya, S. (2021). Forecasting emergency department hourly occupancy using time series analysis, American Journal of Emergency Medicine, 48(1), 177-182. https://doi.org/10.1016/j.ajem.2021.04.075
Christoffersen, P., Elkamhi, R., Feunou, B. & Jacobs K. (2010). Option Valuation with Conditional Heteroskedasticity and Non-Normality, Review of Financial Studies, 23(5), 2139-2183. https://www.jstor.org/stable/40604840
Dutta, J., & Roy, S. (2021). IndoorSense: context based indoor pollutant prediction using SARIMAX model, Multimedia Tools and Applications, 80(13), 19989-20018. https://doi.org/10.1007/s11042-021-10666-w
El-Khatib, Y., & Hatemi, J., A. (2020). The second order price sensitivities for markets in a crisis. Journal of King Saud University-Science. 32(1), 131-135. https://doi.org/10.1016/j.jksus.2018.03.016
Font, B. (2004). Estrategias especulativas óptimas con opciones. Revista Española De Financiación y Contabilidad. 33(120), 161–203.
Gao, R., Li, Y., Bai, Y., Hong, S. (2019). Bayesian Inference for Optimal Risk Hedging Strategy Using Put Options With Stock Liquidity, IEEE Access, Vol. 7, 146046-146056. https://doi.org/10.1109/ACCESS.2019.2946260
Hao, J., y&Zhang, J. (2013). GARCH Option Pricing Models, the CBOE VIX, and Variance Risk Premium. Journal of Financial Econometrics, 11(3), 556-580. https://doi.org/10.1093/jjfinec/nbs026
Investing, (2021). S&P BMV/IPC Overview, Recuperado de: https://www.investing.com/indices/ipc [Consultado el 25 de diciembre de 2021]
Jain, A., Sukhdeve, T., Gadia, H., Sahu, S.P., Verma, S. (2021). COVID19 Prediction using Time Series Analysis, Proceedings International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, 9395877, 1599-1606
Kim, S., Kim, H., and Kim, J. (2020). ELS pricing and hedging in a fractional Brownian motion environment. Chaos Solitons & Fractals, Vol. 142, 110453. https://doi.org/10.1016/j.chaos.2020.110453
Kim, B., Suh, D., Otto, M. O., Huh, J. S. (2021). A Novel Hybrid Spatio-Temporal Forecasting of Multisite Solar Photovoltaic Generation, Remote sensing, 13(13), 1-20. https://doi.org/10.3390/rs13132605
Manigandan, P., Alam, M.D.S., Alharthi, M., Pachiyappan, D., Rehman, A. (2021). Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models, Energies,14(19). https://doi.org/10.3390/en14196021
MexDer, (2021). Contratos de opciones listados en MexDer. [En línea]. Disponible en: http://www.mexder.com.mx/wb3/wb/MEX/contratos_opcion. [Consultado el 25 de diciembre de 2021]
Olivares, H. A. (2013). Análisis de escenarios monte carlo para decisiones de cobertura de riesgos mediante opciones europeas de compra. Tesis de Maestría en Finanzas. División de Estudios de Posgrado de la Facultad de Contaduría y Administración. Universidad Nacional Autónoma de México. México.
Olivares, H. A., Ortiz, A. y López, F. (2016). Generación de estrategias de cobertura con opciones europeas y simulación Monte Carlo con modelos GARCH-M. Capítulo del libro de Administración de riesgos, Volumen VI, Grupo de investigación de Mercados e Instituciones Financieras, y la Red para el Análisis de Riesgos Financieros, UAM, vol. 1.
Olivares, H. A., y Medina, A. (2021). Mejores estrategias de cobertura en acciones del MexDer durante el primer año de la COVID-19. Análisis Económico, XXXVI (92), 127-144. https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n92/Olivares
Parisi F., y Guerrero C. (2003). Modelos predictivos de redes neuronales en índices bursátiles. El Trimestre Económico. 70(4), 721–744.
Parisi, A., Parisi, F., y Cornejo, E. (2004). Algoritmos genéticos y modelos multivariados recursivos en la predicción de índices bursátiles de américa del norte: IPC, TSE, NASDAQ y DJI. El Trimestre Económico, 71(4), 789–809.
Pincheira, P., y García, Á. (2012). En busca de un buen marco de referencia predictivo para la inflación en Chile. El Trimestre Económico. 79(1), 85–123. https://doi.org/10.20430/ete.v79i313.56
Pooniwala, N., & Sutar, R. (2021). Forecasting Short-Term Electric Load with a Hybrid of ARIMA Model and LSTM Network, International Conference on Computer Communication and Informatics, ICCCI 2021, 9402461. https://doi.org/10.1109/ICCCI50826.2021.9402461
Prilistya, S., Permanasari, A.E., Fauziati, S. (2021). The Effect of The COVID-19 Pandemic and Google Trends on the Forecasting of International Tourist Arrivals in Indonesia, IEEE Region 10 Symposium.
Romero, P. (2004). Transmisión de volatilidad a lo largo de la estructura temporal de SWAPS: Evidencia Internacional. Revista Española de Financiación y Contabilidad. 33(123), 873–898.
Soto, R. (2002). Ajuste estacional e integración en variables macroeconómicas. Cuadernos de Economía, 39(116), 135–155.
Valadez, B., & Ortiz, E. (2020). Chicago and Mexico Futures Markets Asymmetries and Hedging Performance. Estocástica: Finanzas y Riesgo, 10 (2), 221-251.
Vishnu, C. R., Sridharan, R., Ram Kumar, P. N., & Regi Kumar, V. (2019). Analysis of the operational risk factors in public hospitals in an indian state: A hybrid DEMATEL–ISM–PROMETHEE approach. International Journal of Health Care Quality Assurance, 33(1), 67-88. https://doi.org/10.1108/IJHCQA-06-2018-0156
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Héctor Alonso Olivares Aguayo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
