Induced technological innovation: a bibliometric analysis of solar energy research, 1960-2018

Authors

  • Andrés Felipe Rúa-Ortiz Instituto Tecnológico Metropolitano
  • Humberto Merritt Instituto Politécnico Nacional-Centro de Investigaciones Económicas, Administrativas y Sociales
  • Jhoany Alejandro Valencia Arias Instituto Tecnológico Metropolitano

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2020v35n89/Rua

Keywords:

solar energy, technological innovation, alternative technologies, oil, bibliometrics

Abstract

In recent years the number of natural disasters caused by global warming has grown. Following these disasters, the use of fossil fuels to meet global energy demand has been criticized by considering the alternative of replacing oil with cleaner energy such as solar, wind and hydraulic. However, the adoption and implementation of alternative energies face both economic and structural advantages and disadvantages. Among the former are the growing technological innovations that increase its attractiveness in terms of opportunity costs, and in the latter are the low economic competitiveness that alternative (or clean) technologies still offer compared to oil. This article addresses the origin of the substitution from a historical framework by postulating that the technological boom of alternative energies, in particular solar energy was induced by the oil embargo that the United States suffered in 1973 and served as an incentive to fire research in these technologies. Following a bibliometric search methodology, the analysis is divided into six stages to demonstrate that the rise in the price of oil triggered the rise of alternative energy but as the number of published articles grew, the research area was consolidated, separating from the effect price.

Downloads

Download data is not yet available.

Author Biographies

Andrés Felipe Rúa-Ortiz, Instituto Tecnológico Metropolitano

Ingeniero Electronico y de Telecomunicaciones, Candidato a Magister en Gestión de la innovación Tecnologica Cooperación y Desarrollo Regional del ITM-Medellín. Investigador en el Departamento de Ciencias Administrativas, Facultad de Ciencias Económicas y Administrativas.

Humberto Merritt, Instituto Politécnico Nacional-Centro de Investigaciones Económicas, Administrativas y Sociales

Doctor en Política Científica y Tecnológica por el Science and Technology Policy Research (SPRU) de la Universidad de Sussex en Brighton, Gran Bretaña. Maestro en Economía por el Centro de Estudios Económicos de El Colegio de México.

Jhoany Alejandro Valencia Arias, Instituto Tecnológico Metropolitano

Alejandro Valencia-Arias currently works at the Departamento de Ciencias Administrativas, Instituto Tecnológico Metropolitano. Jhoany Alejandro does research in Entrepreneurship. Business Administration and Marketing.

References

Abhat, A. (1983). Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy, 30(4), 313–332. https://doi.org/10.1016/0038-092X(83)90186-X

Adams, F. G., & Griffin, J. M. (1972). An economic-linear programming model of the U.S. petroleum refining industry. Journal of the American Statistical Association, 67(339), 542–551. https://doi.org/10.1080/01621459.1972.10481246

Adelman, M. A. (1970). Economics of exploration for petroleum and other minerals. Geoexploration, 8(3–4), 131–150. https://doi.org/10.1016/0016-7142(70)90030-X

Agista, M. N., Guo, K., & Yu, Z. (2018). A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery. Applied Sciences (Switzerland), 8(6). https://doi.org/10.3390/app8060871

Agrawal, P. (2015). India’s petroleum demand: estimations and projections. Applied Economics, 47(12), 1199–1212. https://doi.org/10.1080/00036846.2014.993131

Ahmed, F. E., Hashaikeh, R., & Hilal, N. (2019). Solar powered desalination – Technology, energy and future outlook. Desalination, 453(December 2018), 54–76. https://doi.org/10.1016/j.desal.2018.12.002

Babulanam, S. M., Eriksson, T. S., Niklasson, G. A., & Granqvist, C. G. (1987). Thermochromic VO2 films for energy-efficient windows. Solar Energy Materials, 16(5), 347–363. https://doi.org/10.1016/0165-1633(87)90029-3

Benedict, B. A. (2017). Understanding Full Life-cycle Sustainability Impacts of Energy Alternatives. Energy Procedia, 107(September 2016), 309–313. https://doi.org/10.1016/j.egypro.2016.12.158

British Petroleum (BP) (2017). A year of strong delivery and growth, London. BP

Chandel, A. K., & Sukumaran, R. K. (2017). Sustainable biofuels development in India. Sustainable Biofuels Development in India. https://doi.org/10.1007/978-3-319-50219-9

Chévez, P. J., Martini, I., & Discoli, C. (2019). Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability. Applied Energy, 237 (December 2018), 751–778. https://doi.org/10.1016/j.apenergy.2019.01.037

Cleveland, C. J. (1993). An exploration of alternative measures of natural resource scarcity: the case of petroleum resources in the U.S. Ecological Economics, 7(2), 123–157. https://doi.org/10.1016/0921-8009(93)90050-G

Cook, B. (1981). Cost hinders shale moves (petroleum sources). Petroleum Review, 35(413), 12–13.

Daniels, F. (1962). Energy storage problems. Solar Energy, 6(3), 78–83. https://doi.org/10.1016/0038-092X(62)90031-2

Debnath, D., Whistance, J., Thompson, W., & Binfield, J. (2017). Complement or substitute: Ethanol’s uncertain relationship with gasoline under alternative petroleum price and policy scenarios. Applied Energy, 191, 385–397. https://doi.org/10.1016/j.apenergy.2017.01.028

Dixon, P. B., Osborne, S., & Rimmer, M. T. (2007). The economy-wide effects in the United States of replacing crude petroleum with biomass. Energy and Environment, 18(6), 709–722. https://doi.org/10.1260/095830507782088631

Durham, C. A., Colby, B. G., & Longstreth, M. (1988). The Impact of State Tax Credits and Energy Prices on Adoption of Solar Energy Systems. Land Economics, 64(4): 347-355.

EIA - U.S. Energy Information Administration. (2019). International Energy Outlook 2019. Washington, DC: U.S. Department of Energy.

Fereres, S., Prieto, C., Giménez-Gavarrell, P., Rodríguez, A., Sánchez-Jiménez, P. E., & Pérez-Maqueda, L. A. (2018). Molten carbonate salts for advanced solar thermal energy power plants: Cover gas effect on fluid thermal stability. Solar Energy Materials and Solar Cells, 188(August), 119–126. https://doi.org/10.1016/j.solmat.2018.08.028

Field, C., Barros, V., Dokken, D., Mach, K., & Mastrandrea, M. (2014). Cambio Climático 2014. Quinto Informe de Evaluación Del Grupo Intergubernamental de Expertos Sobre El Cambio Climático. Accesado de https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_es.pdf

Gallegos, M., Gomez, A., Gonzalez, L., Montes De Oca, M. A., Yánez, L., Zermeño, J. A., & Gutiérrez-Rojas, M. (2000). Diagnostic and resulting approaches to restore petroleum-contaminated soil in a Mexican tropical swamp. Water Science and Technology, 42(5–6), 377–384. https://doi.org/10.2166/wst.2000.0538

Gaucher, L. P. (1972). Energy requirements of the future. Solar Energy, 14(1), 5–10. https://doi.org/10.1016/0038-092X(72)90017-5

Glynn, & Heinke. (1999). Ingeneria Ambiental.Pdf (segunda ed). Mexico.

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3): 424-438.

Guangul, F. M., & Chala, G. T. (2019). Solar energy as renewable energy source: SWOT analysis. 2019 4th MEC International Conference on Big Data and Smart City, ICBDSC 2019, 1–5. https://doi.org/10.1109/ICBDSC.2019.8645580

Haschke, J., Dupré, O., Boccard, M., & Ballif, C. (2018). Silicon heterojunction solar cells: Recent technological development and practical aspects - from lab to industry. Solar Energy Materials and Solar Cells, 187(July), 140–153. https://doi.org/10.1016/j.solmat.2018.07.018

Jacobsson, S., & Johnson, A. (2000). The Diffusion of Renewable Energy Technology: An Analytical Framework and Key Issues for Research. Energy Policy, 28(9): 625-640. [10.1016/S0301-4215(00)00041-0]

Jiménez, R. V. (2010). Energía, desarrollo y globalización: Los dilemas de la soberanía. Mexico.

Kay, A., & Grätzel, M. (1996). Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 44(1), 99–117. https://doi.org/10.1016/0927-0248(96)00063-3

Kayabasi, E., Ozturk, S., Celik, E., Kurt, H., & Arcaklioğlu, E. (2018). Prediction of nano etching parameters of silicon wafer for a better energy absorption with the aid of an artificial neural network. Solar Energy Materials and Solar Cells, 188(August), 234–240. https://doi.org/10.1016/j.solmat.2018.08.027

Kenzhetayeva, Z., & Fleming, R. (2017). Building synergies, strengthening fundamentals, and driving leadership in investment decision process within petroleum fields. Society of Petroleum Engineers - SPE Abu Dhabi International Petroleum Exhibition and Conference 2017, 2017-Janua, 2019. https://doi.org/10.2118/188665-ms

Kraemer, D., McEnaney, K., Cao, F., Ren, Z., & Chen, G. (1970). Accurate determination of the total hemispherical emittance and solar absorptance of opaque surfaces at elevated temperatures. Solar Energy Materials and Solar Cells, 132, 640–649. https://doi.org/10.1016/j.solmat.2014.10.026

Lakhani, H. (1980). Forecasting the Economic, Energy, and Environmental Impacts of National Energy Plans, 1990-2000. Technological Forecasting and Social Change, 18(4): 301-320. [10.1016/0040-1625(80)90093-1]

Landsberg, H. E. (1961). Solar radiation at the earth’s surface. Solar Energy, 5(3), 95–98. https://doi.org/10.1016/0038-092X(61)90051-2

Leder, F., & Shapiro, J. N. (2008). This time it’s different. An inevitable decline in world petroleum production will keep oil product prices high, causing military conflicts and shifting wealth and power from democracies to authoritarian regimes. Energy Policy, 36(8), 2850–2852. https://doi.org/10.1016/j.enpol.2008.04.015

López, K. L. (2013). INNOVACIÓN Casos de estudio sobre sectores productivos. Mexico.

Madsen, D. N., & Hansen, J. P. (2019). Outlook of solar energy in Europe based on economic growth characteristics. Renewable and Sustainable Energy Reviews, 114(July), 109306. https://doi.org/10.1016/j.rser.2019.109306

McQuillin, R., Bacon, M., & Barclay, W. (1984). An introduction to seismic interpretation: reflection seismics in petroleum exploration. An Introduction to Seismic Interpretation: Reflection Seismics in Petroleum Exploration. Second Edition., 2019.

Montiel, C., Quintero, R., & Aburto, J. (2009). Petroleum biotechnology: Technology trends for the future. African Journal of Biotechnology, 8(25), 7228–7240. https://doi.org/10.5897/AJB2009.000-9306

Nelson, J. E. (1988). Satellite communications technology application in the petroleum industry. Instrumentation in the Chemical and Petroleum Industries, Proceedings, 20, 15–19.

Ozgul, A., Plard, F., Barthold, J., Kendall, B. E., Gaillard, J.-M., Coulson, T., & Schindler, S. (2017). Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change. The American Naturalist, 190(3), 313–336. https://doi.org/10.1086/692542

Perez, R., Ineichen, P., Seals, R., Michalsky, J., & Stewart, R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271–289. https://doi.org/10.1016/0038-092X(90)90055-H

Pérez, M. del P., Merritt, H., & Isuza, G. (2015). Los desafíos del desarrollo local. México.

Pons, M., & Guilleminot, J. J. (1986). Design of an experimental solar-powered, solid-adsorption ice maker. Journal of Solar Energy Engineering, Transactions of the ASME, 108(4), 332–337. https://doi.org/10.1115/1.3268115

Pourafshary, P., Azimipour, S. S., Motamedi, P., Samet, M., Taheri, S. A., Bargozin, H., & Hendi, S. S. (2009). Priority assessment of investment in development of nanotechnology in upstream petroleum industry. Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium 2009, 2019. https://doi.org/10.2118/126101-ms

Price, H., Lüpfert, E., Kearney, D., Zarza, E., Cohen, G., Gee, R., & Mahoney, R. (2002). Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering, Transactions of the ASME, 124(2), 109–125. https://doi.org/10.1115/1.1467922

Richard, O., Aimez, V., Arès, R., Fafard, S., & Jaouad, A. (2018). Simulation of through-cell vias contacts under non-uniform concentrated light profiles. Solar Energy Materials and Solar Cells, 188 (March), 241–248. https://doi.org/10.1016/j.solmat.2018.08.023

Roy, & Ragunath. (2018). Emerging membrane technologies for water and energy sustainability: Future prospects, constraints and challenges. Energies, 11(11). https://doi.org/10.3390/en11112997

Sánchez, L., Pérez, R., & Vásquez, C. (2017). Eficiencia de países desarrollados en el control del uso de combustibles fósiles para generar energía. Revista Científica ECOCIENCIA, 4(2), 58–71. Accesado de http://ecociencia.ecotec.edu.ec/upload/php/files/abril17/04.pdf

Sánchez-Juárez A. T. (2018). Propuesta metodológica para evaluación de riesgos de tecnologías energéticas en etapa de diseño, Editorial Jus, Medellín.

Santini, D. J. (1988). Past and future of the petroleum problem: the increasing need to develop alternative transportation fuels. Transportation Research Record, (1175), 1–14.

Shiva Prasad, B. G., & Sharma, K. R. (2010). Alternative energy for energy sustainability. Annals of Arid Zone, 49(3–4), 175–191.

Silva, M. D. F. M. E., Calijuri, M. L., Sales, F. J. F. De, Souza, M. H. B. De, & Lopes, L. S. (2014). Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes. Resources, Conservation and Recycling, 91, 71–81. https://doi.org/10.1016/j.resconrec.2014.07.016

Singh, B. B. N., Sun, S., Roy, P., Venkatesh, B., Okoye, F., & Muthusamy, V. (2017). Urban sustainability through emerging technologies. IHTC 2017 - IEEE Canada International Humanitarian Technology Conference 2017, 161–166. https://doi.org/10.1109/IHTC.2017.8058180

Svensmark, H., & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage - A missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59(11), 1225–1232. https://doi.org/10.1016/S1364-6826(97)00001-1

Terjung, W. H. (1970). A global classification of solar radiation. Solar Energy, 13(1), 67–81. https://doi.org/10.1016/0038-092X(70)90008-3

Wang, Z., & Fingas, M. (1996). Separation and characterization of petroleum hydrocarbons and surfactant in orimulsion dispersion samples. Environmental Science and Technology, 30(11), 3351–3361. https://doi.org/10.1021/es960248h

Weale, M. (2008). High Oil Prices: Implications and Prospects. National Institute Economic Review, 205(1): 4-7. [10.1177/0027950108096579]

Weesner, J. D., & Whiting, M. (1987). Have Falling Oil Prices Wiped Out the Alternative Energy Market? Paper presented at the 9th World Energy Engineering Congress: Strategies for Energy Efficient Plants and Intelligent Buildings, Atlanta GA, USA.

Published

2020-05-15

How to Cite

Rúa-Ortiz, A. F., Merritt, H., & Valencia Arias, J. A. (2020). Induced technological innovation: a bibliometric analysis of solar energy research, 1960-2018. Análisis Económico, 35(89), 239–269. https://doi.org/10.24275/uam/azc/dcsh/ae/2020v35n89/Rua

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.