Tecnologías clave, desafíos y tendencias de los vehículos eléctricos:
una revisión sistemática
DOI:
https://doi.org/10.24275/Palabras clave:
vehículos eléctricos, tecnología de baterías, infraestructura de carga, gestión de energía, movilidad sostenibleResumen
Este estudio analiza tecnologías clave, desafíos y tendencias en el desarrollo de vehículos eléctricos (VEs) mediante una revisión sistemática de la literatura (2010-2024) siguiendo la metodología PRISMA. Se examinan avances en baterías, infraestructura de carga, gestión de energía y manufactura sostenible. Los resultados destacan la importancia de la eficiencia energética de las baterías, el desarrollo de redes de carga rápida y la integración vehículo-red (V2G) en la adopción de VE, aunque persisten desafíos como la escasez de materiales críticos, la infraestructura limitada y la sostenibilidad del ciclo de vida de las baterías. Se concluye que la adopción masiva de VE requiere avances tecnológicos, políticas públicas efectivas, inversiones en infraestructura y regulaciones sostenibles. Se recomienda explorar estrategias de reciclaje de baterías, evaluar el impacto económico y desarrollar modelos de integración con la red eléctrica para impulsar la transición hacia la electromovilidad.
Clasificación JEL: O33, Q55, L62, Q42, R41.
Descargas
Referencias
Aganti M., Kumar Gouda P., Kodandapani D., Santhakumar C. & Chokkalingam B. (2022). Investigation of battery management system for electric vehicles wireless power charger. Materials Today: Proceedings, 68. https://doi.org/10.1016/j.matpr.2022.08.052
Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. (2018). Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environmental Research Letters, 13(12). https://iopscience.iop.org/article/10.1088/1748-9326/aae9b1
Ahuja, J., Dawson, L. & Lee, R. (2020). A circular economy for electric vehicle batteries: driving the change, Journal of Property, Planning and Environmental Law, 12(3), 235-250. http://dx.doi.org/10.1108/JPPEL-02-2020-0011
Anastasiadou, K. & Gavanas, N. (2022). State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers. Energies, 15(24), 9409. https://doi.org/10.3390/en15249409
Arrow (2022). Principales tendencias y tecnología para la infraestructura de carga de vehículos eléctricos. https://www.arrow.com/es-mx/research-and-events/articles/key-trends-and-technology-for-electricvehicle-charging-infrastructure
Barbosa, W., Prado, T., Batista, C., Câmara, J., Cerqueira, R., Coelho, R. & Guarieiro, L. (2022). Electric Vehicles: Bibliometric Analysis of the Current State of the Art and Perspectives. Energies, 15, 395, 1-16. https://doi.org/10.3390/en15020395
Barrios, K., Orozco, D., Pérez, E. & Conde, G. (2021). Nuevas recomendaciones de la versión PRISMA 2020 para revisiones sistemáticas y metaanálisis. Acta Neurológica Colombiana, 37(2), 105-106. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-87482021000300105
Basu, P., Jamasb, T. & Sen, A. (2024). Trilemma or Trinity? The nexus of economic growth, circular economy and net zero. Energy Economics, 138. https://doi.org/10.1016/j.eneco.2024.107844
Bencivelli, L., Jorra, M., Baron, A.L., Suárez-Varela, M. & Vuletic, M. (2024). El auge del coche eléctrico en China y su impacto en la Unión Europea. Boletín Económico, 2024/T4. Artículo 03. https://doi.org/10.53479/37852
Burke, A. & Miller, M. (2009). Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles. Institute of Transportation Studies. https://escholarship.org/uc/item/3mc7g3vt
Calderón-Guizar, J. G. (2010). Estudios de estabilidad transitoria en sistemas eléctricos industriales con generación propia interconectados con el sistema de transmisión. Ingeniería, investigación y tecnología, 11(4), 445-451. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-
77432010000400008&lng=es&tlng=es
Campoverde-Pillco, L. S., Ochoa-Correa, J., Villa-Ávila, D. & Astudillo-Salinas, P. (2024). Reutilización de baterías de vehículos eléctricos para aplicaciones de segunda vida en sistemas eléctricos de potencia: una revisión sistemática. Ingenius. Revista de Ciencia y Tecnología, 31, 95-105. https://doi.org/10.17163/
ings.n31.2024.08
Carvalho E., Pinho Brasil Júnior A. & Brasil A. (2023). Impact of electric vehicle emissions in the Brazilian scenario of energy transition and use of bioethanol. Energy Reports, 10. https://doi.org/10.1016/j.egyr.2023.09.045
Chan, C. C. (2007). The State of the Art of Electric Hybrid, and Fuel Cell Vehicle. Proceedings of the IEEE, 95(4), 704-718. https://doi.org/10.1109/JPROC.2007.892489
Chinoracky, R., Stalmasekova, N. & Corejova, T. (2022). Trends in the Field of Electromobility—From the Perspective of Market Characteristics and Value-Added Services: Literature Review. Energies, 15(17), 6144. https://doi.org/10.3390/en15176144
Cuervo-Cazurra, A., Dieleman, M., Hirsch, P., Rodrigues, S. & Zyglidopoulos, S. (2021). Multinationals’ misbehavior. Journal of World Business, 56(5). https://doi.org/10.1016/j.jwb.2021.101244
El Economista (2023). Parlamento Europeo aprueba la prohibición de los vehículos de gasolina y diésel en el 2035. https://www.eleconomista.com.mx/empresas/Parlamento-Europeo-aprueba-la-prohibicionde-los-vehiculos-de-gasolina-y-diesel-en-el-2035-20230214-0037.html#:~:text=El%20Parlamento%20
Europeo%20aprobó%20formalmente,y%20combatir%20el%20calentamiento%20global
EY (2023). Seis claves para el despliegue definitivo del vehículo eléctrico. Resumen ejecutivo. https://www.ey.com/es_es/growth/seis-claves-para-despliegue-definitivo-vehiculo-electrico
Fang, S., Song, J., Song, H., Tai, Y., Li, F. & Sinh, T. (2016). Design and control of a novel two-speed Uninterrupted Mechanical Transmission for electric vehicles. Mechanical Systems and Signal Processing, 75. https://doi.org/10.1016/j.ymssp.2015.07.006
Farfan-Cabrera, L., Erdemir, A., Cao-Romero-Gallegos, J. & Aguilar-Rosas, O. (2024). Electrified tribotesting of lubricants and materials used in electric vehicle drivelines. Electric Vehicle Tribology. https://doi.org/10.1016/B978-0-443-14074-7.00015-7
Fernandez, G., Sathik, J. M., Raman, L. A., El-Shahat, A., Hasanien, H. M., Almakhles, D., Abdel, S. H. E. & Omar, A. I. (2023). Assessment of charging technologies, infrastructure and charging station recommendation schemes of electric vehicles: A review. Ain Shams Engineering Journal, 14(4).
https://doi.org/10.1016/j.asej.2022.101938
Ferreira, C. & Sucre, C. (2024). A más baterías de litio, más reciclaje y reúso. Energías para el futuro. https://blogs.iadb.org/energia/es/a-mas-baterias-de-litio-mas-reciclaje-y-reuso/
Gamage, T., Tal, G. & Jenn, A. T. (2023). The costs and challenges of installing corridor DC Fast Chargers in California. Case Studies on Transport Policy, 11. https://doi.org/10.1016/j.cstp.2023.100969
Gao, J., Li, Z., Nguyen, T. & Zhang, W. (2025). Digital transformation and enterprise employment. International Review of Economics & Finance, 99, 104036. https://doi.org/10.1016/j.iref.2025.104036
Gokasar, I., Deveci, M., Isik, M., Daim, T., Zaidan, A. & Smarandache, F. (2023). Evaluation of the alternatives of introducing electric vehicles in developing countries using Type-2 neutrosophic numbers based RAFSI model. Technological Forecasting and Social Change, 192. https://doi.org/10.1016/j.
techfore.2023.122589
Guevara, M. A., Río-Belver, R. M., Martinez, I. & Morales, C. (2021). Análisis bibliométrico de la contribución científica latinoamericana en vehículos eléctricos. Dirección y Organización, (75), 62-73. https://doi.org/10.37610/dyo.v0i75.610
Helmers, E. & Marx, P. (2012). Electric cars: technical characteristics and environmental impacts. Environmental Sciences Europe, 24(14). https://doi.org/10.1186/2190-4715-24-14
Horst, M., Burmeister, J., Abdollahifar, M., Pillitteri, S. & Kwade, A. (2023). A binder-free dry coating process for high sulfur loading cathodes of Li–S batteries: A proof-of-concept. Journal of Power Sources, 587, 233675. https://doi.org/10.1016/j.jpowsour.2023.233675
Husain, I., Ozpineci, B., Islam, Md., Gurpinar, E., Su, G. Y., Wensong, Y., Chowdhury, Sh., Xue, L., Rahman, D. & Sahu, R. (2021). “Electric Drive Technology Trends, Challenges and Opportunities for Future Electric Vehicles”. Proceedings of the IEEE, 109(6), 1039-1059. http://dx.doi.org/10.1109/JPROC.2020.3046112
Ibrokhimjon, A., Lin, N. & Rashidov, J. (2024). Electric Vehicles: Manuscript of a Bibliometric Analysis Unveiling Trends, Innovations and Future Pathways. International Journal of Automotive Science and Technology, 8(2), 212-224. https://doi.org/10.30939/ijastech..1424879
International Energy Agency [IEA] (2023). Global EV Outlook 2023: Policy Developments. https://www.iea.org/reports/global-ev-outlook-2023/policy-developments
International Energy Agency [IEA] (2024). Global EV Outlook 2024. https://www.iea.org/reports/global-evoutlook-2024/executive-summary
Jiang, Y., Xia, B., Zhao, X., Nguyen, T., Mi, C. & de Callafon, R. (2017). Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery. Energy, 135(C). https://doi.org/10.1016/j.energy.2017.06.109
Karimabadi, M. S. A. & Leal-Arcas, R. (2023). Chapter 16 - Electricity decentralization and energy transition in Luxembourg. In R. Leal-Arcas (Ed.), Electricity Decentralization in the European Union: Towards Zero Carbon and Energy Transition, (pp. 425-434). https://doi.org/10.1016/C2022-0-01938-3
Kett, E. (2018). Electromobility. The future, but when? https://www.thersa.org/blog/2018/12/electromobility.-the-future-but-when
Khan, A., Naqvi, I., Bhargava, C., Lin, C., Boles, S., Kong, L. & Pecht, M. (2025). Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. Renewable and Sustainable Energy Reviews, 212. https://doi.org/10.1016/j.rser.2025.115408
Koroma, M. S., Costa, D., Philippot, M., Cardellini, G., Hosen, M. S., Coosemans, T. & Messagie, M. (2022). Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management. Science of The Total Environment, 831, 154859.
https://doi.org/10.1016/j.scitotenv.2022.154859
Liu, X., Zhao, F. & Liu, Z. (2022). Energy-saving cost-effectiveness analysis of improving engine thermal efficiency and extending all-electric range methods for plug-in hybrid electric vehicles. Energy Conversion and Management, 267. https://doi.org/10.1016/j.enconman.2022.115898
Locke, J. (2021). ¿Cómo se desarrolla y crece la infraestructura de los vehículos eléctricos en Estados Unidos? https://es.digi.com/blog/post/ev-infrastructure
Lopez-Arboleda, E., Sarmiento, A. & Cardenas, L. (2023). Policy assessment for electromobility promotion in Colombia: A system dynamics approach. Transportation Research Part D: Transport and Environment, 121. https://doi.org/10.1016/j.trd.2023.103799
Mateen, S., Amir, M., Haque, A. & Bakhsh, F. I. (2023). Ultra-fast charging of electric vehicles: A review of power electronics converter, grid stability and optimal battery consideration in multi-energy systems. Sustainable Energy, Grids and Networks, 35, 101112. https://doi.org/10.1016/j.segan.2023.101112
Mercado, A. & Córdova, K. (2014). Desarrollo tecnológico en baterías e impulsión eléctrica ¿Sistemas tecnológicos disruptivos promovidos por imperativos ambientales? Cuadernos del CENDES, 31(85), 1-21.https://www.redalyc.org/pdf/403/40331800002.pdf
Milde, W. & Lux, S. (2025). Cell and Battery Design – Batteries | Hardware. Encyclopedia of Electrochemical Power Sources. https://doi.org/10.1016/B978-0-323-96022-9.00253-X
Mohammad, N. K. & Shavarebi, K. (2019). A review of global automotive industry’s competitive strategies. World Journal of Science, Technology and Sustainable Development, 16(4), 170-183. https://doi.org/10.1108/WJSTSD-10-2018-0060
Mohtat, P., Pannala, S., Sulzer, V., Siegel, J. B. & Stefanopoulou, A. G. (2021). An Algorithmic Safety VEST For Li-ion Batteries During Fast Charging. arXiv:2108.07833. https://doi.org/10.48550/arXiv.2108.07833
Montayo, A. (2021). Electromovilidad en Chile 2020. Asociación Gremial de Vehículos en Chile, febrero, 1-6. https://www.avec.cl/wp-content/uploads/2021/03/Electromovilidad-en-Chile-2020.pdf
Morales, E. (2023). Electromovilidad. Infraestructura de carga: el gran reto de México. https://alianzaautomotriz.com/electromovilidad-infraestructura-de-carga-el-gran-reto-de-mexico/
Morejón-Monteros, P., Banegas-Arias, D. & Ochoa-Correa, D. (2024). Impacto de la carga lenta de vehículos eléctricos en la calidad de energía de la red de distribución: una revisión sistemática de la literatura. Revista Cedamaz, 14(1), 69-79. https://doi.org/10.54753/cedamaz.v14i1.2220
Moyo, T., Onososen, A. O., Musonda, I. & Muzioreva, H. (2023). Advancements in E-mobility: A bibliometric literature review on battery technology, charging infrastructure, and energy management”. En Musonda, I., Mwanaumo, E., Onodosen, A. & Moyo, T. (Eds.) Smart and Resilient Infrastructure For Emerging
Economies: Perspectives on Building Better. London: CRC Press. https://doi.org/10.1201/9781003435648
Negrete, M., Fuentes, M., Kraslawski, A., Irarrazaval, F. & Herrera-León, S. (2024). Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing. Resources Policy, 95. https://doi.org/10.1016/j.resourpol.2024.105135
Nykvist, B. & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329-332. https://doi.org/10.1038/nclimate2564
Orendain, M. (2023). Evolución de las autopartes para vehículos eléctricos en México. México: INA https://ina.com.mx/wp-content/uploads/2023/06/Whitepaper-web.pdf
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T. C., Mulrow, C., Shamseer, L., Tetzlaff, J. M., Aki, E. A., Brenna, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., Mcdonald, S., McGuinness, L. & Stewart, L. A. (2021).
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372: n71. https://doi.org/10.1136/bmj.n71
Pakniyat A. & Caines P. (2017). Hybrid optimal control of an electric vehicle with a dual-planetary transmission. Nonlinear Analysis: Hybrid Systems, 25. https://doi.org/10.1016/j.nahs.2016.08.004
Pellow, M., Ambrose, H., Mulvaney, D., Betita, R. & Shaw, S. (2020). Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End of life options and other issues. Sustainable Materials and Technologies, 23, e00120. https://doi.org/10.1016/j.
susmat.2019.e00120
Pirmana, V., Alisjahbana, A. & Yusuf, A. (2023). Economic and environmental impact of electric vehicles production in Indonesia. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-023-02475-6
Prakhar, P., Jaiswal, R., Gupta, S. & Tiwari, A. (2024). Electric vehicles in transition: Opportunities, challenges, and research agenda – A systematic literature review. Journal of Environmental Management, 372. https://doi.org/10.1016/j.jenvman.2024.123415
Quiñónez, E. F., Cambindo, B. K., Macas, D. R. & Ulloa, R. C. (2024). Desafíos y beneficios de implementar un sistema de carga para vehículos eléctricos en América Latina y el Caribe. Reincisol, 3(6), e3.6–212. https://doi.org/10.59282/reincisol.V3(6)485-505
Rachidi, N., Nwaila, G., Zhang, S., Bourdeau, J. & Ghorbani, Y. (2021). Assessing cobalt supply sustainability through production forecasting and implications for green energy policies. Resources Policy, 74. https://doi.org/10.1016/j.resourpol.2021.102423
Ran, W. & Duan, Y. (2025). Competing manufacturers blockchain technology adoption strategies for carbon emission misrepresentation under cap-and-trade regulation. Computers & Industrial Engineering, 203. https://doi.org/10.1016/j.cie.2025.110960
Rodríguez, D., Gómez, R. & Campos, A. (2015). Sistemas de gestión de baterías (BMS) y su importancia para los sistemas de almacenamiento de baterías (BESS). Revista Tecnura, 19, 51-56. http://dx.doi. org/10.14483/udistrital.jour.tecnura.2015.ICE.a05
Romero-Carrión, D. & Carrión-Galarza, D. (2022). Análisis bibliométrico de la planeación de expansión de los sistemas eléctricos de potencia. Iteckne, 18(2). https://doi.org/10.15332/iteckne.v18i2.2610c
Saraswathi, V. & Ramachandran, V. (2024). A comprehensive review on charger technologies, types, and charging stations models for electric vehicles. Heliyon, 10(20), 1-53. e38945. https://doi.org/10.1016/j.heliyon.2024.e38945
Shabana, R., Sajid, Z., Swamy, D., Amin, M. & Khan, F. (2025). Why does the industry need battery safety management system (BSMS)? Process Safety and Environmental Protection, 197. https://doi.org/10.1016/j.psep.2025.107029
Shahzad, K. & Iqbal, I. (2024). Low-carbon technologies in automotive industry and decarbonizing transport. Journal of Power Sources, 591. https://doi.org/10.1016/j.jpowsour.2023.233888
Sun, W., Zhang, Z., Chen, Y. & Luan, F. (2023). Heterogeneus effects of robots on employment in agriculture, industry, and service sectors. Technology in Society, 75, 102371. https://doi.org/10.1016/j.techsoc.2023.102371
Tarascon, J. M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367. https://www.nature.com/articles/35104644
Torralba, C. & Medina, M. A. (2025). Por qué Noruega vende ya el 90% de coches eléctricos: exención de IVA, peajes gratis e impuestos para los de combustión. El País. https://elpais.com/clima-y-medioambiente/2025-01-08/por-que-noruega-vende-ya-el-90-de-coches-electricos-exencion-de-iva-peajesgratis-
e-impuestos-para-los-de-combustion.html?utm_source=chatgpt.com
Velasco-Ramírez, E., Ángeles-Camacho, C. & García-Martínez, M. (2013). Redes de transmisión inteligente. Beneficios y riesgos. Ingeniería. Investigación y tecnología, 14(1), 81-88. https://www.redalyc.org/pdf/404/40425635007.pdf
Walters, L. & Brusselaers, J. (2024). The energy transition paradox: How lithium extraction puts pressure on environment, society, and politics. The Extractive Industries and Society, 19, 101498. https://doi.org/10.1016/j.exis.2024.101498
Woorward, M., Walton, B., Halmiton, J., Alberts, G., Fullerton-Smith, S. & Day, E. (2020). Electric vehicles. Setting a course for 2030. Deloitte. https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/electric-vehicle-trends-2030.html
World Bank [WB] (2022). Electric Vehicles: An Economic and Environmental Win for Developing Countries. https://www.worldbank.org/en/news/feature/2022/11/17/electric-vehicles-an-economic-andenvironmental-win-for-developing-countries
World Economic Forum [WEF] (2018). How electric vehicles are the start of a global shift in our attitudes. https://www.weforum.org/agenda/2018/04/not-so-fast-why-the-electric-vehicle-revolution-will-bringproblems-of-its-own/?alm_mvr=0
Yang, Y., Wang, W., Qin, J., Wang, M., Ma Q. & Zhong Y. (2024). Review of vehicle to grid integration to support power grid security. Energy Reports, 12, 2786-2800. https://doi.org/10.1016/j.egyr.2024.08.069
Yang, Z. (2023, febrero 21). How did China come to dominate the world of electric cars?, MIT Technology Review. https://www.technologyreview.com/2023/02/21/1068880/how-did-china-dominate-electric-carspolicy/
Xu B., Lee J., Kwon D., Kong L. & Pecht M. (2021). Mitigation strategies for Li-ion battery thermal runaway: A review. Renewable and Sustainable Energy Reviews, 150. https://doi.org/10.1016/j.rser.2021.111437
Xu, J. & Cao, B. (2015). Battery Management System for Electric Drive Vehicles-Modeling, State Estimation and Balancing, In M. Chomat (Ed.) New Applications of Electric Drives. https://doi.org/ 10.5772/61609
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Adriana Martínez Martínez, Alejandro García Garnica, Samuel Estrada Jasso

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
