Comportamiento caótico en los mercados bursátiles latinoamericanos utilizando Visual Recurrence Analysis
Palabras clave:
teoría de caos, análisis de recurrencia, entropía de espacio temporalResumen
Este artículo evidencia un comportamiento caótico en las series de retornos de índices bursátiles latinoamericanos empleando Visual Recurrence Analysis. Utilizando la evolución diaria de los índices accionarios IPSA, MERVAL, BOVESPA e IPC, y luego de aplicar distintas técnicas y métodos como Análisis Gráfico, Análisis de Recurrencia y Entropía de Espacio Temporal, los resultados apoyan la hipótesis de que los mercados bursátiles latinoamericanos se comportan de forma caótica, en contra de la hipótesis de mercados eficientes. Esta conclusión valida el uso de herramientas predictivas de retornos accionarios en los mercados de renta variable latinoamericanos.
Descargas
Referencias
Bai Lin H. (1990). Chaos II, Singapore: World Scientific Publishing Company.
Box, G. E. P. y G. M. Jenkins (1970). Time Series Analysis: Forecasting and Control, San Francisco: Holden Day Inc.
Brock, W. A. y D. W. Dechert (1991). “Non-linear dynamical systems: inestability and chaos in economics”, W. Hildenbrand and H. Sonnenschein, (eds.), Handbook of Mathematical Economics IV, Amsterdam: North-Holland, pp. 2209-2235.
Brock, W., W. Dechert y J. Scheinkman (1987). “A Test for Independence Based on the Correlation Dimension”, Working Paper, University of Wisconsin at Madison, Department of Economics.
Brock, W.A., W.D. Dechert, J.A. Scheinkman y B. LeBaron (1996). “A test for Independence Based on the Correlation Dimension”, Econometric Reviews, vol.15, num. 3, pp. 197-235.
Casdagli, M. (1989). “Nonlinear prediction of chaotic time series”, Physica D 35, vol. 35, pp. 335-356.
__________ (1997). “Recurrence plots revisited”, Physica D 108, pp.12-44.
Conrad J. y G. Kaul (1988). “Time-variation in expected returns”, Journal of Business, vol. 61, pp. 409-425.
__________ (1989). “Mean reversion in short-horizon expected returns”, Review of Financial Studies 2, pp. 225-240.
Di Matteo, Aste y Dacorogna (2005). “Term memories of developed and emerging markets: using the scaling analysis to characterize their stage of development”, Journal of Banking & Finance, vol. 29, pp. 827-851.
Eckmann, J.P. y D. Ruelle (1985). “Ergodic Theory of Chaos and Strange Attractors”, Review of Modern Physics, vol. 57, num. 3, pp. 617-656.
__________ (1992). “Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems”, Physica D, vol. 56, pp.185-187.
Eckmann, J.P., S.O. Kamphorst y D. Ruelle (1987). “Recurrence Plots of Dynamical Systems”, Europhysics Letters, 4 (9), pp. 973-977.
Espinosa C., F. Parisi y A. Parisi (2007). “Pruebas de comportamiento caótico en índices bursátiles americanos”, El Trimestre Económico, vol. LXXIV, núm. 296, pp. 901-927.
Fama, E. (1970). “Efficient capital markets: A review of theory and empirical work”, Journal of Finance, vol. 25, pp. 383-417.
Fama, E. y K. R. French (1988). “Permanent and temporary components of stock prices”, Journal of Political Economy, vol. 98, pp. 247-273.
Fraser, A. y H. Swinney (1986). “Independent coordinates for strange attractors from mutual information”, Physical Review A, vol. 33, pp.1134-1140.
Gilmore, Claire G. (1993). “A new test for chaos”, Journal of Economic Behaviour Organisations, vol. 22, pp. 209-237.
Grassberger, P. y I. Procaccia (1983). “Characterization of Strange Attractors”, Physical Review Letters, vol. 50, num. 3, pp. 346-349.
__________ (1983b). “Measuring the Strangeness of Strange Attractors”, Physica D, 9, pp. 189-208.
Kyaw N., C. Los y S. Zong (2004). “Persistence Characteristics of Latin American Financial Markets”, Economics Working Paper Archive, EconWPA, Finance num. 0411013.
Kennel M.B., R. Brown, y H.D.I. Abarbanel (1992). “Determining embedding dimension for phase space reconstruction using a geometrical construction”, Physica. Review A, num. 45, pp. 403-3411.
Le Barón, B. (1994). “Chaos and nonlinear forecastability in Economics and Finance”, Philosophical Transactions of Royal Society of London, Series A, 348, pp. 397-404.
Lipka J. M. y C. Los (2003). “Long-Term Dependence Characteristics Of European Stock Indices”, Economics Working Paper Archive, EconWPA, Finance Nº 0409044.
Lo, A. y A. C. MacKinley (1988). “Stock market prices do not follow random walk: Evidence from a simple specification test”, Review of Financial Studies, vol. I, pp. 41-66.
López A., C. Martínez, A. García y J. Romero (2001). “El grafico de recurrencia en el análisis de series temporales: el programa VRA (Visual Recurrence Analysis)”, Revista Electrónica de Metodología Aplicada, vol. 6, núm. 1, pp. 1-8.
Los, C. (2004). “Visualization of chaos for finance majors”, Economics Working Paper Archive, EconWPA, Finance num. 0409035.
Los C. y B. Yu (2005). “Persistence Characteristics of the Chinese stock markets”, Economics Working Paper Archive, EconWPA, Finance num. 0508008.
Lorenz, E.N. (1963). “Deterministic nonperiodic Flow”, Journal of Atmospheric Sciences, vol. 20, p. 130.
Mandelbrot, B. (1982). The Fractal Geometry of Nature, San Francisco: Freeman.
Mindlin, G.B. y R. Gilmore (1992). “Topological analysis and synthesis of chaotic time series”, Physica D, num. 58, pp. 229-242.
Peters, E. (1994). Fractal Market analysis: Applying chaos theory to investment and economics, John Wiley & Sons Inc.
__________ (1996). Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, John Wiley & Sons Inc.
Ruelle, D. y F. Takens (1971). “On the nature of turbulence”, Math. Phys., vol. 20, pp. 167-192.
Takens, F. (1981). “Detecting Strange Attractors in Turbulence”, Dynamical Systems and Turbulence. Warwick 1980, Lecture Notes in Mathematics 898, Springer, Berlin, pp. 366-381.
Zbilut, J.P. y C.L. Webber Jr. (1992). “Embeddings and delays as derived from quantification of recurrence plots”, Physics Letters A, 171, pp. 199-203.
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
