Volumen de transacciones, rendimientos y volatilidad del Bitcoin:
Modelo de Heterocedasticidad Condicional Asimétrica (2017-2024)
DOI:
https://doi.org/10.24275/Palabras clave:
Bitcoin, Volatilidad, Volumen de transacciones, GJR-GARCHResumen
Este estudio analiza la relación entre el volumen de transacciones, la volatilidad y los rendimientos de Bitcoin, demostrando que la volatilidad suele estar sobreestimada cuando no se considera el volumen negociado. Se emplea el modelo asimétrico GJR-GARCH para capturar la dinámica de la volatilidad condicional y evaluar su reacción ante choques positivos y negativos. El análisis abarca el período 2017-2024 y cuatro submuestras identificadas mediante la prueba de Bai-Perron para detectar quiebres estructurales. Los resultados indican que la alta volatilidad observada en estudios previos se debe, en gran parte, al bajo volumen de transacciones. Además, se encontró una relación positiva entre el volumen y los rendimientos, así como entre el volumen y la volatilidad en todas las submuestras. Finalmente, se identificó un efecto de apalancamiento tradicional en períodos de crisis y un efecto de apalancamiento inverso en fases expansivas, evidenciando la compleja dinámica del mercado del Bitcoin.
Clasificación JEL: G12, G15, C58, D53.
Descargas
Referencias
Aalborg, H. A., Molnár, P. y de Vries, J. E. (2019). What can explain the price, volatility and trading volume of Bitcoin? Finance Research Letters, 29, 255-265. https://doi.org/10.1016/j.frl.2018.08.010
Bai, J. y Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica, 66(1), 47–78. https://doi.org/10.2307/2998540
Balcilar, M., Bouri, E., Gupta, R. y Roubaud, D. (2017). Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 64, 74–81. https://doi.org/10.1016/j.econmod.2017.03.019
Baur, D. G. y Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148-151. https://doi.org/10.1016/j.econlet.2018.10.008
Baur, D. G., Hong, K. y Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177-189. https://doi.org/10.1016/j.intfin.2017.12.004
Bouri, E., Azzi, G. y Dyhrberg, A. H., (2017). On the return-volatility relationship in the Bitcoin market around the price crash of 2013. Economics. 11(2), 1–16. http://dx.doi.org/10.5018/economics-ejournal.ja.2017-2
Cagli, E. C. (2019). The Causal Relationship Between Returns and Trading Volume in Cryptocurrency Markets: Recursive Evolving Approach. In: Hacioglu, U. (eds.) Blockchain Economics and Financial Market Innovation. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-25275-5_9
Cermak, V. (2017). Can Bitcoin Become a Viable Alternative to Fiat Currencies? An Empirical Analysis of Bitcoin's Volatility Based on a GARCH Model. Available at SSRN: https://ssrn.com/abstract=2961405
Charles, A. y Darné, O. (2019). Volatility estimation for Bitcoin: Replication and robustness. International Economics, 157, 23–32. https://doi.org/10.1016/j.inteco.2018.06.004
Cheikh, N., Zaied, Y. y Chevallier, J. (2020). Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models. Finance Research Letters, 35, 101293. https://doi.org/10.1016/j.frl.2019.09.008
Christie, A. (1982). The stochastic behavior of common stock variance: Value, leverage, and interest rate effects. Journal of Financial Economics, 10(4), 407–432. https://doi.org/10.1016/0304-405X(82)90018-6
Coinmarketcap. (2024). Cryptocurrency market capitalization. Coinmarketcap. https://www.coinmarketcap.com
De Sousa, F., Silva, J., Bertella, M. y Brigatti, E. (2020). The leverage effect and other stylized facts displayed by Bitcoin returns. Brazilian Journal of Physics, 51, 576–586.
Dickey, D. A. y Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072. https://doi.org/10.2307/1912517
Dyhrberg, A. H., (2016a). Bitcoin, gold and the dollar – a garch volatility analysis. Finance Research Letters, 16, 85–92.
Dyhrberg, A. H., (2016b). Hedging capabilities of Bitcoin. Is it the virtual gold? Finance Research Letters, 16, 139–44.
Easley, D., Kiefer, N. M., O’Hara, M. y Paperman, J. B. (1996). Liquidity, information, and infrequently traded stocks. The Journal of Finance, 51(4), 1405–1436. https://doi.org/10.1111/j.1540-6261.1996.tb04074.x
Federal Reserve Bank of St. Louis. (2024). Coinbase Bitcoin (CBBTCUSD) [Data set]. FRED, Federal Reserve Bank of St. Louis. [Retrieved April 25, 2024]. https://fred.stlouisfed.org/series/CBBTCUSD
Gemici, M. y Polat, O. (2019). Re-examining Bitcoin's price–volume relationship: A time-varying approach. Journal of Risk and Financial Management, 12(4), 1-15. https://www.mdpi.com/1911-8074/16/7/324
Gervais, S., Kaniel, R. y Mingelgrin, D. H. (2001). The high-volume return premium. The Journal of Finance, 56(3), 877-919. https://onlinelibrary.wiley.com/doi/10.1111/0022-1082.00349
Glosten, L. R., Jagannathan, R. y Runkle, D. E. (1993). The relationship between expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
Kao, Y.-S., Zhao, K., Chuang, H.-L. y Ku, Y.-C. (2024). The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume. International Review of Economics and Finance, 89, 524–542. https://doi.org/10.1016/j.iref.2023.07.011
Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
Phillips, P. C. B. y Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. https://doi.org/10.1093/biomet/75.2.335
Mensi, W., Lee, Y.-J., Al-Yahyaee, K. H., Sensoy, A. y Yoon, S.-M. (2019). Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis. Finance Research Letters, 31(C), 19–25. https://doi.org/10.1016/j.frl.2019.03.029
Quandl. (2024). Quandl publisher page. Nasdaq Data Link. [Retrieved April 25, 2024]. https://data.nasdaq.com/publishers/ QDL
Sapuric, S., Kokkinaki, A. y Georgiou, I. (2022). "The relationship between Bitcoin returns, volatility and volume: asymmetric GARCH modeling". Journal of Enterprise Information Management, 35(6), 1506-1521. https://doi.org/10.1108/JEIM-10-2018-0228
Telli, Ş. y Chen, H. (2020). Structural breaks and trend awareness-based interaction in crypto markets.
Physica A: Statistical Mechanics and its Applications, 558(C), 124927. https://doi.org/10.1016/j.
physa.2020.124927
Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40-44. https://doi.org/10.1016/j.econlet.2018.02.017
Wang, Y. y Hui, X. (2024). Price-Volume Relationship in Bitcoin Futures ETF Market: An Information Perspective. International Journal of Financial Studies, 12(1), 45-67. https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8066742
Yermack, D. (2015). Is Bitcoin a Real Currency? An Economic Appraisal. Handbook of Digital Currency: Bitcoin, Innovation, Financial Instruments, and Big Data. Elsevier Inc., pp. 31–43. https://doi.org/10.1016/B978-0-12-802117-0.00002-3
Yu, M. (2019). Forecasting Bitcoin volatility: The role of leverage effect and uncertainty. Physica A: Statistical Mechanical and its Applications, 533, 120707. https://doi.org/10.1016/j.physa.2019.03.072
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 María Fernanda Urbán Cortés, Eduardo Rosas Rojas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
