Leontief functions of two variables. A new perspective

Authors

  • Marco Vinicio Monge Universidad de Costa Rica

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n93/Monge

Keywords:

Leontief functions, efficiency, eontief fMarginal Rate of Substitution.

Abstract

This work is theoretical in nature. It seeks to provide an alternative analysis on the Leontief functions in two variables; alternative in the sense that it incorporates the differential calculus ─scarcely used in what regards to this phenomenon─ to find a generalized form of the Marginal Rate of Substitution in perfect complements; it dispenses with it to demonstrate that in an economy of two sectors, each with any form of Leontief technologies, competitive equilibrium also coincides with the technologically efficient allocation. Finally, it is proven that every endowment economy with two individuals both with Leontief preferences ─regardless of their specific form─ has infinite Pareto equilibria.

JEL Classification: C02; C62; D01; D11; D20; D50.

Downloads

Download data is not yet available.

Author Biography

Marco Vinicio Monge, Universidad de Costa Rica

Universidad de Costa Rica

References

Bour, E. (2010). La teoría del valor de Marx y el modelo abierto de Leontief. En Bour. E. (Ed.), Tratado de Microeconomía (654-679). http://www.ebour.com.ar/index.php?option=com_content&task=view&id=153&Itemid=71
Cameron, B. (1952). The Labour Theory of Value in Leontief Models. The Economic Journal, 62 (245), 191-197. https://www.jstor.org/stable/2227198?seq=1
Diewert, W. (1971). An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function. Journal of Political Economy, Vol. 79 (3), 481-507. https://doi.org/10.1086/259764
Garg, J. (2017) Market Equilibrium under Piecewise Leontief Concave Utilities. Theoretical Computer Science, Vol. 703, December, 55-65. https://doi.org/10.1016/j.tcs.2017.09.001
Jiang, W., Fan, J. y Tian, K. (2020). Input-Output Production Structure and Non-Linear Production. Possibility Frontier. Journal of Systems Science and Complexity, 34, 706–723. https://doi.org/10.1007/s11424-020-9079-y
Leontief, W. (1941). The Structure of American Economy, 1919–1929. Cambridge, MA: Harvard University Press.
Li, J. y Xue, J. (2013). Egalitarian Division under Leontief Preferences. Economic Theory, 54 (3), 597-622. https://doi.org/10.1007/s00199-012-0724-0
Mantel, R. (1999). Economías de Mercado y complementariedad perfecta. Económica, Vol. XLV (2), 255-261. http://sedici.unlp.edu.ar/handle/10915/9099
Nicolò, A. (2004). Efficiency and truthfulness with Leontief preferences. A note on two-agent, two-good economies. Review of Economic Design, 8, 373–382. https://doi.org/10.1007/s10058-003- 0112-0
Robles, É. (2007). Las curvas de indiferencia de la Función Leontief. EC-2100: Teoría Microeconómica I. Universidad de Costa Rica.
Ten Raa, T. (2008). Debreu’s coefficient of resource utilization, the Solow residual, and TFP: the connection by Leontief preferences. Journal of Productivity Analysis, 30, 191-199. https://doi.org/10.1007/s11123-008-0112-8
Ugalde, W. (2015). Apuntes de Cálculo en una variable II. MA-0350: Cálculo en una variable II. Universidad de Costa Rica.
Voorneveld, M. (2014). From preferences to Leontief utility. Economic Theory Bulletin. Vol. 2, 197-204. https://doi.org/10.1007/s40505-014-0034-8

Published

2021-09-01

How to Cite

Monge, M. V. (2021). Leontief functions of two variables. A new perspective. Análisis Económico, 36(93), 159–166. https://doi.org/10.24275/uam/azc/dcsh/ae/2021v36n93/Monge

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.