Un análisis del perfil de riesgo en la dinámica de préstamos persona a persona mediante clústeres de K-medias

Autores/as

  • Martha Beatriz Mota Aragón Universidad Autónoma Metropolitana-Iztapalapa
  • Pamela Moncayo Mejia Escuela de Negocios del Tecnológico de Monterrey

DOI:

https://doi.org/10.24275/uam/azc/dcsh/ae/2023v38n99/Mota

Palabras clave:

LendingClub, Fintech, préstamos persona a persona, Clústeres de k-medias, riesgo de crédito

Resumen

Se analiza de manera empírica la base de datos de la Fintech estadounidense LendingClub, la empresa precursora del mercado de préstamos digitales persona a persona. Se busca contextualizar al modelo de negocio a través de su base de datos y las variables implicadas en el perfil de riesgo de los participantes. Se toman cuatro ventanas de tiempo para capturar ciclos económicos y su impacto en el perfil crediticio de los prestatarios. Para identificar los perfiles de riesgo de manera analítica, implementamos la técnica de clústeres de K-medias, definiendo un patrón de segmentación de participantes en función de la tasa de interés de los préstamos y la calificación FICO (Fair Isaac Company). Los patrones de agrupación son constantes a lo largo de los periodos estudiados y permiten determinar niveles promedio de ingreso, tipos de préstamos adquiridos y proveniencia geográfica según perfil de riesgo. Pocos estudios contemplan toda la información disponible de la operación de LendingClub (2007-20203T); por lo tanto este estudio también identifica la transición a la madurez de este modelo de negocio. Este trabajo logra dos objetivos: demostrar la evolución de los clientes y la plataforma a través del tiempo en cuanto se refiere a los perfiles de riesgo de los participantes prestatarios, y destacar el uso de clústeres de K-medias como una herramienta apropiada para el perfilamiento frente a otras alternativas analíticas.

Clasificación JEL: C24; G23; O16.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Martha Beatriz Mota Aragón, Universidad Autónoma Metropolitana-Iztapalapa

Universidad Autónoma Metropolitana-Iztapalapa, CDMX.

Pamela Moncayo Mejia, Escuela de Negocios del Tecnológico de Monterrey

Escuela de Negocios del Tecnológico de Monterrey, EGADE Santa Fe, CDMX

Citas

Adhami, S., Gianfrate, G., & Johan, S. (2019). Risks and returns in crowdlending. Available at SSRN 3345874. https://dx.doi.org/10.2139/ssrn.3345874

Agarwal, S., Ambrose, B. W., & Chomsisengphet, S. (2007). Asymmetric information and the automobile loan market. In Agarwal, S., Ambrose, B. W. (eds) Household Credit Usage. (pp. 93–116). Springer. https://doi.org/10.1057/9780230608917_6

Altman, E., Resti, A., & Sironi, A. (2004). Default recovery rates in credit risk modelling: a review of the literature and empirical evidence. Economic Notes, 33(2), 183–208. https://doi.org/10.1111/j.0391-5026.2004.00129.x

Arner, D. W., Barberis, J. & Buckley, R. P. (2015). The evolution of Fintech: A new post-crisis paradigm? University of Hong Kong Faculty of Law Research Paper No. 2015/047, UNSW Law Research Paper No. 2016-62. http://dx.doi.org/10.2139/ssrn.2676553

Arner, D. W., Barberis, J., & Buckley, R. P. (2016). 150 years of Fintech: An evolutionary analysis. Jassa-the Finsia Journal of Applied Finance, 3, 22–29.

Funk, B., Alex, Bachmann, E., Becker, E., Buerckner, D., Hilker, M., Kock, F., Lehmann, M. & Tiburtius, P. (2011). Online peer-to-peer lending-a literature review. Journal of Internet Banking and Commerce, 16(2), 1-18.

Baesens, B., van Gestel, T., Stepanova, M., van den Poel, D. & Vanthienen, J. (2005). Neural network survival analysis for personal loan data. Journal of the Operational Research Society, 56(9), 1089–1098. https://doi.org/10.1057/palgrave.jors.2601990

Berger, S. C. & Gleisner, F. (2014). Emergence of financial intermediaries in electronic markets: The case of online P2P lending. BuR Business Research, 2(1), 39-65. https://doi.org/10.1007/BF03343528

Bikhchandani, S. & Sharma, S. (2000). Herd behavior in financial markets. IMF Staff Papers, 47(3), 279–310. https://doi.org/10.2307/3867650

Bowley, G. (2011). The new speed of money, reshaping markets. New York Times, January 3.

Calabrese, R., Osmetti, S. A. & Zanin, L. (2019). A joint scoring model for peer-to-peer and traditional lending: a bivariate model with copula dependence. Journal of the Royal Statistical Society. Series A: Statistics in Society, 182(4), 1163–1188. https://doi.org/10.1111/rssa.12523

Calabrese, R. & Zanin, L. (2022). Modelling spatial dependence for Loss Given Default in peer-to-peer lending. Expert Systems with Applications, 192, April. https://doi.org/10.1016/j.eswa.2021.116295

Chengeta, K. & Mabika, E. R. (2021). Peer to Peer Social Lending Default Prediction with Convolutional Neural Networks. IcABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings. https://doi.org/10.1109/icABCD51485.2021.9519309

Crouhy, M., Galai, D. & Mark, R. (2000). A comparative analysis of current credit risk models. Journal of Banking & Finance, 24(1–2), 59–117. http://dx.doi.org/10.1016/S0378-4266(99)00053-9

Cumming, D. J. & Hornuf, L. (2020). Marketplace Lending of SMEs. Center for Economic Studies and Ifo Institute (CESifo), 8100. http://hdl.handle.net/10419/215102

Dangeti, P. (2017). Statistics for machine learning. Packt Publishing Ltd.

Dehejia, R., Montgomery, H. & Morduch, J. (2012). Do interest rates matter? Credit demand in the Dhaka slums. Journal of Development Economics, 97(2), 437–449. https://doi.org/10.1016/j.jdeveco.2011.05.002

Demirgüç-Kunt, A. & Huizinga, H. (1999). Determinants of commercial bank interest margins and profitability: some international evidence. The World Bank Economic Review, 13(2), 379–408. https://doi.org/10.1093/wber/13.2.379

Emekter, R., Tu, Y., Jirasakuldech, B. & Lu, M. (2015). Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Applied Economics, 47(1), 54–70. https://doi.org/10.1080/00036846.2014.962222

Gonzalez, L. & Loureiro, Y. K. (2014). When can a photo increase credit? The impact of lender and borrower profiles on online peer-to-peer loans. Journal of Behavioral and Experimental Finance, 2 (C), 44–58. https://doi.org/10.1016/j.jbef.2014.04.002

Hales, M. G. (1995). Focusing on 15% of the pie. Bank Marketing, 27(4), 29–33.

Herrera-Arizmendi, P. J. & Amezcua-Núñez, J. B. (2020). El uso de pagos electrónicos, con CoDi en México. Vincula Tégica Efan. Año 6, Vol. 2, julio-diciembre, 1111-1119. http://www.web.facpya.uanl.mx/vinculategica/Vinculategica6_2/9_Herrera_Amezcua.pdf

Jagtiani, J. & Lemieux, C. (2019). The roles of alternative data and machine learning in fintech lending: Evidence from the LendingClub consumer platform. Financial Management, 48(4), 1009–1029. https://doi.org/10.1111/fima.12295

James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer. https://link.springer.com/book/10.1007/978-1-0716-1418-1

Jiménez, G. & Saurina, J. (2004). Collateral, type of lender and relationship banking as determinants of credit risk. Journal of Banking & Finance, 28(9), 2191–2212. https://doi.org/10.1016/j.jbankfin.2004.06.010

Kim, J.-Y. & Cho, S.-B. (2019). Predicting repayment of borrows in peer-to-peer social lending with deep dense convolutional network. Expert Systems, 36(3). https://doi.org/10.1111/exsy.12403

Koch, R. (2011). The 80/20 Principle: The Secret of Achieving More with Less: Updated 20th anniversary edition of the productivity and business classic. Hachette UK.

Komrattanapanya, P. & Suntraruk, P. (2013). Factors influencing dividend payout in Thailand: A tobit regression analysis. International Journal of Accounting and Financial Reporting, 3(2), 255. http://dx.doi.org/10.5296/ijafr.v3i2.4443

Kriebel, J. & Stitz, L. (2022). Credit default prediction from user-generated text in peer-to-peer lending using deep learning. European Journal of Operational Research. Vol. 302 (1), 309-323. https://doi.org/10.1016/j.ejor.2021.12.024

Lee, E. & Lee, B. (2012). Herding behavior in online P2P lending: An empirical investigation. Electronic Commerce Research and Applications, 11(5), 495–503. https://doi.org/10.1016/j.elerap.2012.03.001

Lee, I. & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://doi.org/10.1016/j.bushor.2017.09.004

Li, H. (2016). Clustering similar lenders in P2P lending. Proceedings of 2016 3rd International Conference on Education, Management and Computing Technology (ICEMCT 2016), 1045–1048. https://doi.org/10.2991/icemct-16.2016.219

Lim, M. K. & Sohn, S. Y. (2007). Cluster-based dynamic scoring model. Expert Systems with Applications, 32(2), 427–431. https://doi.org/10.1016/j.eswa.2006.01.034

Maudos, J. & de Guevara, J. F. (2004). Factors explaining the interest margin in the banking sectors of the European Union. Journal of Banking & Finance, 28(9), 2259–2281. https://doi.org/10.1016/j.eswa.2006.01.034

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470. https://doi.org/10.2307/2978814

Mia, M. A. H., Rahman, M. A. & Uddin, M. (2007). E-Banking: Evolution, Status and Prospect. The Cost and Management, 35(1), 36-48. https://ssrn.com/abstract=2371134

Mills, K. & McCarthy, B. (2014). The state of small business lending: Credit access during the recovery and how technology may change the game. Harvard Business School General Management Unit Working Paper, 15–004. https://dx.doi.org/10.2139/ssrn.2470523

Moreno Moreno, A. M., Berenguer, E. & Sanchís Pedregosa, C. (2018). A model proposal to determine a crowd-credit-scoring. Economics & Sociology, 11(4), 69-79. https://doi.org/10.36008/eands.11.4.06

Moreno-Moreno, A. M., Sanchis-Pedregosa, C. & Berenguer, E. (2019). Success Factors in Peer-to-Business (P2B) Crowdlending: A Predictive Approach. IEEE Access, 7, 148586–148593. https://doi.org/10.1109/ACCESS.2019.2946858

Morgan, J. P. (1997). Creditmetrics-technical document. JP Morgan, New York. https://dx.doi.org/10.2139/ssrn.3278236

Mundet, H. B. & Gutiérrez, D. M. (2015). La financiación colectiva y su papel en el mundo de la empresa. Análisis Financiero, 129,68-78.

Nüesch, R., Alt, R. & Puschmann, T. (2015). Hybrid Customer Interaction. Business & Information Systems Engineering. Vol. 57, No. 1. 73-78). https://doi.org/10.1007/s12599-014-0366-9

Peppard, J. (2000). Customer relationship management (CRM) in financial services. European Management Journal, 18(3), 312–327. https://doi.org/10.1016/S0263-2373(00)00013-X

Pujun, B., Nick, C. & Max, L. (2016). Demystifying the workings of Lending Club. CS229 Stanford. http://cs229.stanford.edu/proj2016spr/report/039.pdf

Sahin, Y. & Duman, E. (2010). Detecting credit card fraud by decision trees and support vector machines. World Congress on Engineering 2012. July 4-6, 2012. London, UK., 2188, 442–447.

Serrano-Cinca, C. & Gutiérrez-Nieto, B. (2016). The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending. Decision Support Systems, 89, 113–122. https://doi.org/10.1016/j.dss.2016.06.014

Serrano-Cinca, C., Gutiérrez-Nieto, B., & López-palacios, L. (2015). Determinants of Default in P2P Lending. PLOS One, 1–22. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139427

Stiglitz, J. E. & Weiss, A. (1981). Credit rationing in markets with imperfect information. The American Economic Review, 71(3), 393–410. https://www.jstor.org/stable/1802787

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S. & Satoto, B. D. (2018). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conference Series: Materials Science and Engineering, 336(1), 012017. http://dx.doi.org/10.1088/1757-899X/336/1/012017

Wang, Y. & Hua, R. (2014). Guiding the healthy development of the P2P industry and promoting SME financing. 2014 International Conference on Management of E-Commerce and e-Government, 318–322. https://doi.org/10.1109/ICMeCG.2014.53

Wardrop, R., Zhang, B., Rau, R. & Gray, M. (2015). Moving mainstream. The European Alternative Finance Benchmarking Report, 1, 43. https://ideas.repec.org/a/ris/jofipe/0087.html

Yum, H., Lee, B. & Chae, M. (2012). From the wisdom of crowds to my own judgment in microfinance through online peer-to-peer lending platforms. Electronic Commerce Research and Applications, 11(5), 469–483. https://doi.org/10.1016/j.elerap.2012.03.001

Zhang, D., Zhou, X., Leung, S. C. H. & Zheng, J. (2010). Vertical bagging decision trees model for credit scoring. Expert Systems with Applications, 37(12), 7838–7843. https://doi.org/10.1016/j.eswa.2010.04.054

Zhang, J. & Liu, P. (2012). Rational herding in microloan markets. Management Science, 58(5), 892–912. https://www.jstor.org/stable/41499528

Ziegler, T., Shneor, R., Wenzlaff, K., Suresh, K., Ferri, F., Paes, C., Mammadova, L., Wanga, C., Kekre, N., Mutinda, S., Wang, B. W., Closs, C. L., Zhang, B., Forbes, H., Soki, E., Alam, N. & Knaup, C. (2021). Global Alternative Finance Market Benchmarking The 2nd Global Alternative Finance Market Benchmarking Report. https://ssrn.com/abstract=3878065

Descargas

Publicado

2023-09-20

Cómo citar

Mota Aragón, M. B., & Moncayo Mejia, P. (2023). Un análisis del perfil de riesgo en la dinámica de préstamos persona a persona mediante clústeres de K-medias. Análisis Económico, 38(99), 119–144. https://doi.org/10.24275/uam/azc/dcsh/ae/2023v38n99/Mota

Artículos similares

<< < 1 2 3 4 5 6 7 8 > >> 

También puede {advancedSearchLink} para este artículo.